scholarly journals Pseudo-Permutations II: Geometry and Representation Theory

2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
François Boulier ◽  
Florent Hivert ◽  
Daniel Krob ◽  
Jean-Christophe Novelli

International audience In this paper, we provide the second part of the study of the pseudo-permutations. We first derive a complete analysis of the pseudo-permutations, based on hyperplane arrangements, generalizing the usual way of translating the permutations. We then study the module of the pseudo-permutations over the symmetric group and provide the characteristics of this action.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Matthew Housley ◽  
Heather M. Russell ◽  
Julianna Tymoczko

International audience The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Andrew Berget ◽  
Brendon Rhoades

International audience The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics. We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$. More precisely, we construct a graded $S_{n+1}$-module $V_n$ such that the restriction of $V_n$ to $S_n$ is isomorphic to $\mathrm{Park}_n$. We describe the $S_n$-Frobenius characters of the module $V_n$ in all degrees and describe the $S_{n+1}$-Frobenius characters of $V_n$ in extreme degrees. We give a bivariate generalization $V_n^{(\ell, m)}$ of our module $V_n$ whose representation theory is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this bivariate generalization. L’action du groupe symétrique $S_n$ sur l’ensemble $\mathrm{Park}_n$ des fonctions de stationnement de longueur $n$ a reçu beaucoup d’attention dans la combinatoire algébrique. Nous démontrons que l’action de $S_n$ sur $\mathrm{Park}_n$ s’étend à une action de $S_{n+1}$. Plus précisément, nous construisons un gradué $S_{n+1}$-module $V_n$ telles que la restriction de $S_n$ est isomorphe à $\mathrm{Park}_n$. Nous décrivons la $S_n$-Frobenius caractères des modules $V_n$ à tous les degrés et décrivent le $S_{n+1}$-Frobenius caractères de $V_n$ en degrés extrêmes. Nous donnons une généralisation bivariée $V_n^{(\ell, m)}$ de notre module $V_n$ dont la représentation théorie est régie par une généralisation bivariée des chemins de Dyck. Une généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.


10.37236/1809 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Anthony Mendes ◽  
Jeffrey Remmel ◽  
Jennifer Wagner

A $\lambda$-ring version of a Frobenius characteristic for groups of the form $G \wr S_n$ is given. Our methods provide natural analogs of classic results in the representation theory of the symmetric group. Included is a method decompose the Kronecker product of two irreducible representations of $G\wr S_n$ into its irreducible components along with generalizations of the Murnaghan-Nakayama rule, the Hall inner product, and the reproducing kernel for $G\wr S_n$.


2020 ◽  
Vol Volume 31 - 2019 - CARI 2018 ◽  
Author(s):  
Radhouane Fekih-Salem ◽  
Tewfik Sari

International audience The objective of this study is to analyze a model of the chemostat involving the attachment and detachment dynamics of planktonic and aggregated biomass in the presence of a single resource. Considering the mortality of species, we give a complete analysis for the existence and local stability of all steady states for general monotonic growth rates. The model exhibits a rich set of behaviors with a multiplicity of coexistence steady states, bi-stability, and occurrence of stable limit cycles. Moreover, we determine the operating diagram which depicts the asymptotic behavior of the system with respect to control parameters. It shows the emergence of a bi-stability region through a saddle-node bifurcation and the occurrence of coexistence region through a transcritical bifurcation. Finally, we illustrate the importance of the mortality on the destabilization of the microbial ecosystem by promoting the washout of species. L'objectif de cette étude est d'analyser un modèle du chémostat impliquant la dynamique d'attachement et de détachement de la biomasse planctonique et agrégée en présence d'une seule ressource. En considérant la mortalité des espèces, nous donnons une analyse complète de l'existence et de la stabilité locale de tous les équilibres pour des taux de croissance monotones. Le modèle pré-sente un ensemble riche de comportements avec multiplicité d'équilibres de coexistence, bi-stabilité et apparition des cycles limites stables. De plus, nous déterminons le diagramme opératoire qui dé-crit le comportement asymptotique du système par rapport aux paramètres de contrôle. Il montre l'émergence d'une région de bi-stabilité via une bifurcation noeud col et l'occurrence d'une région de coexistence via une bifurcation transcritique. Enfin, nous illustrons l'importance de la mortalité sur la déstabilisation de l'écosystème microbien en favorisant le lessivage des espèces.


1950 ◽  
Vol 2 ◽  
pp. 334-343 ◽  
Author(s):  
G. DE B. Robinson

1. Introduction. The problem of the expression of an invariant matrix of an invariant matrix as a direct sum of invariant matrices is intimately associated with the representation theory of the full linear group on the one hand and with the representation theory of the symmetric group on the other. In a previous paper the author gave an explicit formula for this reduction in terms of characters of the symmetric group. Later J. A. Todd derived the same formula using Schur functions, i.e. characters of representations of the full linear group.


1954 ◽  
Vol 6 ◽  
pp. 486-497 ◽  
Author(s):  
G. de B. Robinson

The study of the modular representation theory of the symmetric group has been greatly facilitated lately by the introduction of the graph (9, III ), the q-graph (5) and the hook-graph (4) of a Young diagram [λ]. In the present paper we seek to coordinate these ideas and relate them to the r-inducing and restricting processes (9, II ).


1964 ◽  
Vol 16 ◽  
pp. 191-203 ◽  
Author(s):  
G. de B. Robinson

The purpose of this paper is to clarify and sharpen the argument in the last two chapters of the author's Representation theory of the symmetric group(3). When these chapters were written the peculiar properties of the case p = 2 were not fully appreciated. No difficulty arises in the definition of the block in terms of the p-core, or in the application of the general modular theory based on the formula


2015 ◽  
Vol 13 (07) ◽  
pp. 1550049
Author(s):  
Haixia Chang ◽  
Vehbi E. Paksoy ◽  
Fuzhen Zhang

By using representation theory and irreducible characters of the symmetric group, we introduce character dependent states and study their entanglement via geometric measure. We also present a geometric interpretation of generalized matrix functions via this entanglement analysis.


Author(s):  
Camillo Trapani

The notion of (unbounded)C*-seminorms plays a relevant role in the representation theory of*-algebras and partial*-algebras. A rather complete analysis of the case of*-algebras has given rise to a series of interesting concepts like that of semifiniteC*-seminorm and spectralC*-seminorm that give information on the properties of*-representations of the given*-algebraAand also on the structure of the*-algebra itself, in particular whenAis endowed with a locally convex topology. Some of these results extend to partial*-algebras too. The state of the art on this topic is reviewed in this paper, where the possibility of constructing unboundedC*-seminorms from certain families of positive sesquilinear forms, called biweights, on a (partial)*-algebraAis also discussed.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


Sign in / Sign up

Export Citation Format

Share Document