scholarly journals On Kerov polynomials for Jack characters (extended abstract)

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Maciej Dołęga

International audience We consider a deformation of Kerov character polynomials, linked to Jack symmetric functions. It has been introduced recently by M. Lassalle, who formulated several conjectures on these objects, suggesting some underlying combinatorics. We give a partial result in this direction, showing that some quantities are polynomials in the Jack parameter $\alpha$ with prescribed degree. Our result has several interesting consequences in various directions. Firstly, we give a new proof of the fact that the coefficients of Jack polynomials expanded in the monomial or power-sum basis depend polynomially in $\alpha$. Secondly, we describe asymptotically the shape of random Young diagrams under some deformation of Plancherel measure.

10.37236/9011 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
James Haglund ◽  
Andrew Timothy Wilson

We express the integral form Macdonald polynomials as a weighted sum of Shareshian and Wachs' chromatic quasisymmetric functions of certain graphs. Then we use known expansions of these chromatic quasisymmetric functions into Schur and power sum symmetric functions to provide Schur and power sum formulas for the integral form Macdonald polynomials. Since the (integral form) Jack polynomials are a specialization of integral form Macdonald polynomials, we obtain analogous formulas for Jack polynomials as corollaries. 


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Maciej Dolega ◽  
Valentin Féray

International audience Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series ψ(x, y, z; t, 1 + β) that might be interpreted as a continuous deformation of the rooted hypermap generating series. They made the following conjecture: coefficients of ψ(x, y, z; t, 1+β) are polynomials in β with nonnegative integer coefficients. We prove partially this conjecture, nowadays called b-conjecture, by showing that coefficients of ψ(x, y, z; t, 1 + β) are polynomials in β with rational coefficients. Until now, it was only known that they are rational functions of β. A key step of the proof is a strong factorization property of Jack polynomials when α → 0 that may be of independent interest.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Piotr Sniady

International audience In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal polynomials in terms of power-sum symmetric functions. These formulas are analogs of recent developments on irreducible character values of symmetric groups. The existence of such formulas could have been predicted from the work of M. Lassalle who formulated two positivity conjectures for Jack characters, which we prove in the special case of zonal polynomials. Dans cet article, nous établissons une nouvelle formule combinatoire pour les polynômes zonaux en fonction des fonctions puissance. La preuve utilise le principe de l'involution changeant les signes. Nous en déduisons des formules pour les caractères zonaux, qui sont définis comme les coefficients des polynômes zonaux écrits sur la base des fonctions puissance, normalisés de manière appropriée. Ces formules sont des analogues de développements récents sur les caractères du groupe symétrique. L'existence de telles formules aurait pu être prédite à partir des travaux de M. Lassalle, qui a proposé deux conjectures de positivité sur les caractères de Jack, que nous prouvons dans le cas particulier des polynômes zonaux.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Anne Schilling ◽  
Mike Zabrocki

International audience We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Seung Jin Lee

International audience We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigatethe combinatorics of affine Schubert calculus for typeA. We introduce Murnaghan-Nakayama elements and Dunklelements in the affine FK algebra. We show that they are commutative as Bruhat operators, and the commutativealgebra generated by these operators is isomorphic to the cohomology of the affine flag variety. As a byproduct, weobtain Murnaghan-Nakayama rules both for the affine Schubert polynomials and affine Stanley symmetric functions. This enable us to expressk-Schur functions in terms of power sum symmetric functions. We also provide the defi-nition of the affine Schubert polynomials, polynomial representatives of the Schubert basis in the cohomology of theaffine flag variety.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jean-Christophe Aval ◽  
Valentin Féray ◽  
Jean-Christophe Novelli ◽  
J.-Y. Thibon

International audience We consider the multivariate generating series $F_P$ of $P-$partitions in infinitely many variables $x_1, x_2, \ldots$ . For some family of ranked posets $P$, it is natural to consider an analog $N_P$ with two infinite alphabets. When we collapse these two alphabets, we trivially recover $F_P$. Our main result is the converse, that is, the explicit construction of a map sending back $F_P$ onto $N_P$. We also give a noncommutative analog of the latter. An application is the construction of a basis of $\mathbf{WQSym}$ with a non-negative multiplication table, which lifts a basis of $\textit{QSym}$ introduced by K. Luoto.


10.37236/1547 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Leigh Roberts

Recently Lapointe et. al. [3] have expressed Jack Polynomials as determinants in monomial symmetric functions $m_\lambda$. We express these polynomials as determinants in elementary symmetric functions $e_\lambda$, showing a fundamental symmetry between these two expansions. Moreover, both expansions are obtained indifferently by applying the Calogero-Sutherland operator in physics or quasi Laplace Beltrami operators arising from differential geometry and statistics. Examples are given, and comments on the sparseness of the determinants so obtained conclude the paper.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Olivier Mallet

International audience In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the natural q-analogue coming from the degree of symmetric functions seems to be unknown so far. Dans cet article, nous présentons un travail en cours sur un nouveau modèle combinatoire conjectural pour les nombres de Genocchi. Ce nouveau modèle est celui des k-formes irréductibles, qui repose sur de solides bases algébriques en lien avec la théorie des fonctions symétriques et qui conduit à des aspects apparemment nouveaux de la théorie des nombres de Genocchi. En particulier, le q-analogue naturel venant du degré des fonctions symétriques semble inconnu jusqu'ici.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


Sign in / Sign up

Export Citation Format

Share Document