scholarly journals Affine permutations and rational slope parking functions

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Eugene Gorsky ◽  
Mikhail Mazin ◽  
Monica Vazirani

International audience We introduce a new approach to the enumeration of rational slope parking functions with respect to the <mathrm>area</mathrm> and a generalized <mathrm>dinv</mathrm> statistics, and relate the combinatorics of parking functions to that of affine permutations. We relate our construction to two previously known combinatorial constructions: Haglund's bijection ζ exchanging the pairs of statistics (<mathrm>area</mathrm>,<mathrm>dinv</mathrm>) and (<mathrm>bounce</mathrm>, <mathrm>area</mathrm>) on Dyck paths, and Pak-Stanley labeling of the regions of k-Shi hyperplane arrangements by k-parking functions. Essentially, our approach can be viewed as a generalization and a unification of these two constructions.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Samuele Giraudo

International audience We introduce a functorial construction which, from a monoid, produces a set-operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operad obtained from the additive monoid. These involve various familiar combinatorial objects: parking functions, packed words, planar rooted trees, generalized Dyck paths, Schröder trees, Motzkin paths, integer compositions, directed animals, etc. We also retrieve some known operads: the magmatic operad, the commutative associative operad, and the diassociative operad.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Andrew Berget ◽  
Brendon Rhoades

International audience The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics. We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$. More precisely, we construct a graded $S_{n+1}$-module $V_n$ such that the restriction of $V_n$ to $S_n$ is isomorphic to $\mathrm{Park}_n$. We describe the $S_n$-Frobenius characters of the module $V_n$ in all degrees and describe the $S_{n+1}$-Frobenius characters of $V_n$ in extreme degrees. We give a bivariate generalization $V_n^{(\ell, m)}$ of our module $V_n$ whose representation theory is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this bivariate generalization. L’action du groupe symétrique $S_n$ sur l’ensemble $\mathrm{Park}_n$ des fonctions de stationnement de longueur $n$ a reçu beaucoup d’attention dans la combinatoire algébrique. Nous démontrons que l’action de $S_n$ sur $\mathrm{Park}_n$ s’étend à une action de $S_{n+1}$. Plus précisément, nous construisons un gradué $S_{n+1}$-module $V_n$ telles que la restriction de $S_n$ est isomorphe à $\mathrm{Park}_n$. Nous décrivons la $S_n$-Frobenius caractères des modules $V_n$ à tous les degrés et décrivent le $S_{n+1}$-Frobenius caractères de $V_n$ en degrés extrêmes. Nous donnons une généralisation bivariée $V_n^{(\ell, m)}$ de notre module $V_n$ dont la représentation théorie est régie par une généralisation bivariée des chemins de Dyck. Une généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Rachel Karpman

International audience A <i>parametrization</i> of a positroid variety $\Pi$ of dimension $d$ is a regular map $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ which is birational onto a dense subset of $\Pi$. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are essentially the same. Our first family is defined in terms of Postnikov’s <i>boundary measurement map</i>, and the domain of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar networks called <i>bridge graphs</i>, which have applications to particle physics. Our second family arises from Marsh and Rietsch’s parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization from a bridge graph agrees with some projected Deodhar parametrization. Soit $\Pi$ une variété positroïde. Nous appellerons <i>paramétrisation</i> toute application régulière $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ qui est un isomorphisme birégulier sur un sous-ensemble dense de $\Pi$. On sait que plusieurs constructions combinatoires donnent des paramétrisations intéressantes. Le but du présent article est d’investiguer deux familles de telles paramétrisations et de montrer, essentiellement, qu’elles coïncident. La première famille trouve son origine dans la <i>fonction de mesure des bords</i> de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l’ensemble de poids des arêtes d’un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux planaires, les <i>graphes de ponts</i>, ayant des applications à la physique subatomique. La deuxième famille provient des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de positroïdes en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar correspond à un graphe de ponts; d’autre part, chaque paramétrisation provenant d’un graphe de ponts s’accorde avec quelque paramétrisation de Deodhar.


Author(s):  
Fairouz Dahi ◽  
Nora Bounour

International audience The existence of crosscutting concerns tangled or scattered, complicates the understanding and evolution of object oriented source code. The industrial adoption of aspect-oriented paradigm has led to research new approaches supporting aspect oriented migration. This migration requires the identification of crosscutting concerns, in order to encapsulate them into aspects. We propose in this paper a new approach for the identification of crosscutting concerns at the conceptual level. We materialize this latter by the UML class and sequence diagrams. We use the formal concept analysis to group scattered functionalities in sequence diagrams, and we analyze the order of method calls to detect the tangled ones. Then, we filter all obtained candidate aspects, in order to avoid the mistakes.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Heesung Shin ◽  
Jiang Zeng

International audience For a fixed sequence of $n$ positive integers $(a,\bar{b}) := (a, b, b,\ldots, b)$, an $(a,\bar{b})$-parking function of length $n$ is a sequence $(p_1, p_2, \ldots, p_n)$ of positive integers whose nondecreasing rearrangement $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfies $q_i \leq a+(i-1)b$ for any $i=1,\ldots, n$. A $(a,\bar{b})$-forest on $n$-set is a rooted vertex-colored forests on $n$-set whose roots are colored with the colors $0, 1, \ldots, a-1$ and the other vertices are colored with the colors $0, 1, \ldots, b-1$. In this paper, we construct a bijection between $(bc,\bar{b})$-parking functions of length $n$ and $(bc,\bar{b})$-forests on $n$-set with some interesting properties. As applications, we obtain a generalization of Gessel and Seo's result about $(c,\bar{1})$-parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] and a refinement of Yan's identity [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] between an inversion enumerator for $(bc,\bar{b})$-forests and a complement enumerator for $(bc,\bar{b})$-parking functions. Soit $(a,\bar{b}) := (a, b, b,\ldots, b)$ une suite d'entiers positifs. Une $(a,\bar{b})$-fonction de parking est une suite $(p_1, p_2, \ldots, p_n)$ d'entiers positives telle que son réarrangement non décroissant $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfait $q_i \leq a+(i-1)b$ pour tout $i=1,\ldots, n$. Une $(a,\bar{b})$-forêt enracinée sur un $n$-ensemble est une forêt enracinée dont les racines sont colorées avec les couleurs $0, 1, \ldots, a-1$ et les autres sommets sont colorés avec les couleurs $0, 1, \ldots, b-1$. Dans cet article, on construit une bijection entre $(bc,\bar{b})$-fonctions de parking et $(bc,\bar{b})$-forêts avec des des propriétés intéressantes. Comme applications, on obtient une généralisation d'un résultat de Gessel-Seo sur $(c,\bar{1})$-fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] et une extension de l'identité de Yan [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] entre l'énumérateur d'inversion de $(bc,\bar{b})$-forêts et l'énumérateur complémentaire de $(bc,\bar{b})$-fonctions de parking.


2010 ◽  
Vol Vol. 12 no. 2 ◽  
Author(s):  
Hsien-Kuei Hwang ◽  
Michael Fuchs ◽  
Vytas Zacharovas

Dedicated to the 60th birthday of Philippe Flajolet International audience Asymptotics of the variances of many cost measures in random digital search trees are often notoriously messy and involved to obtain. A new approach is proposed to facilitate such an analysis for several shape parameters on random symmetric digital search trees. Our approach starts from a more careful normalization at the level of Poisson generating functions, which then provides an asymptotically equivalent approximation to the variance in question. Several new ingredients are also introduced such as a combined use of the Laplace and Mellin transforms and a simple, mechanical technique for justifying the analytic de-Poissonization procedures involved. The methodology we develop can be easily adapted to many other problems with an underlying binomial distribution. In particular, the less expected and somewhat surprising n (logn)(2)-variance for certain notions of total path-length is also clarified.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jean-Baptiste Priez

International audience We give an exact enumerative formula for the minimal acyclic deterministic finite automata. This formula is obtained from a bijection between a family of generalized parking functions and the transitions functions of acyclic automata. On donne une formule d’énumération exacte des automates finites déterministes acycliques minimaux. Cetteformule s’obtient à partir d’une bijection entre une famille fonctions de parking généralisées et les fonctions detransitions des automates acycliques.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Christopher R. H. Hanusa ◽  
Brant C. Jones

International audience We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere. Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Yan X Zhang

International audience We explore the enumeration of some natural classes of graded posets, including $(2 + 2)$-avoiding graded posets, $(3 + 1)$-avoiding graded posets, $(2 + 2)$- and $(3 + 1)$-avoiding graded posets, and the set of all graded posets. As part of this story, we discuss a situation when we can switch between enumeration of labeled and unlabeled objects with ease, which helps us generalize a result by Postnikov and Stanley from the theory of hyperplane arrangements, answer a question posed by Stanley, and see an old result of Klarner in a new light. Nous étudions l’énumération de certaines classes naturelles de posets gradués, y compris ceux qui évitent les motifs $(2+2)$, $(3+1)$, $(2+2)$ et $(3+1)$, et l’ensemble de tous les posets gradués. En particulier, nous considérons une situation où l’énumération d’objets marqués et non marqués sont reliées de façon simple, ce qui nous permet de généraliser un résultat de Postnikov et Stanley en théorie des arrangements d’hyperplans, répondre à une question posée par Stanley, et voir sous un nouveau jour un vieux résultat de Klarner et Kreweras.


Sign in / Sign up

Export Citation Format

Share Document