scholarly journals The number of directed $k$-convex polyominoes

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Adrien Boussicault ◽  
Simone Rinaldi ◽  
Samanta Socci

International audience We present a new method to obtain the generating functions for directed convex polyominoes according to several different statistics including: width, height, size of last column/row and number of corners. This method can be used to study different families of directed convex polyominoes: symmetric polyominoes, parallelogram polyominoes. In this paper, we apply our method to determine the generating function for directed $k$-convex polyominoes.We show it is a rational function and we study its asymptotic behavior. Nous présentons une nouvelle méthode générique pour obtenir facilement et rapidement les fonctions génératrices des polyominos dirigés convexes avec différentes combinaisons de statistiques : hauteur, largeur, longueur de la dernière ligne/colonne et nombre de coins. La méthode peut être utilisée pour énumérer différentes familles de polyominos dirigés convexes: les polyominos symétriques, les polyominos parallélogrammes. De cette façon, nouscalculons la fonction génératrice des polyominos dirigés $k$-convexes, nous montrons qu’elle est rationnelle et nous étudions son comportement asymptotique.

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Alexander Raichev ◽  
Mark C. Wilson

International audience Let $\sum_{\mathbf{n} \in \mathbb{N}^d} F_{\mathbf{n}} \mathbf{x}^{\mathbf{n}}$ be a multivariate generating function that converges in a neighborhood of the origin of $\mathbb{C}^d$. We present a new, multivariate method for computing the asymptotics of the diagonal coefficients $F_{a_1n,\ldots,a_dn}$ and show its superiority over the standard, univariate diagonal method. Several examples are given in detail.


2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL M. KANE ◽  
ROBERT C. RHOADES

Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of$n$without$k$consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they yield asymptotics for the number of partitions that avoid patterns.Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models, introduced the study of partitions without$k$consecutive parts. Andrews showed that when$k=2$, the generating function for these partitions is a mixed-mock modular form and, thus, has modularity properties which can be utilized in the study of this generating function. For$k>2$, the asymptotic properties of the generating functions have proved more difficult to obtain. Using$q$-series identities and the$k=2$case as evidence, Andrews stated a conjecture for the asymptotic behavior. Extensive computational evidence for the conjecture in the case$k=3$was given by Zagier.This paper improved upon early approaches to this problem by identifying and overcoming two sources of error. Since the writing of this paper, a more precise asymptotic result was established by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.


2011 ◽  
Vol 07 (03) ◽  
pp. 721-738 ◽  
Author(s):  
CHRISTIAN MAIRE

Dans ce travail, nous nous intéressons au plongement [Formula: see text] des T-unités d'un corps de nombres K dans une partie de ses complétés p-adiques construite sur l'ensemble S. Nous montrons que l'injectivité de [Formula: see text] permet d'obtenir des informations sur la structure du groupe de Galois de certaines extensions de K où la ramification est liée à S et la décomposition à T. Nous étudions également le comportement asymptotique du noyau de [Formula: see text] le long d'une extension p-adique analytique sans p-torsion. In this article, we are interested in the embedding [Formula: see text] of the T-units of a number field K in some part of its p-adic completions at S. We show that the injectivity of [Formula: see text] allows us to obtain some information on the structure of the Galois group of some extensions of K where the ramification is attached at S and the decomposition at T. Moreover, we study the asymptotic behavior of the kernel [Formula: see text] along a p-adic analytic extension.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
T. K. Petersen ◽  
L. Serrano

International audience We show that the set $R(w_0)$ of reduced expressions for the longest element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically, $R(w_0)$ possesses a natural cyclic action given by moving the first letter of a word to the end, and we show that the orbit structure of this action is encoded by the generating function for the major index on $R(w_0)$. Nous montrons que l'ensemble $R(w_0)$ des expressions réduites pour l'élément le plus long du groupe hyperoctaédral présente le phénomène cyclique de tamisage. Plus précisément, $R(w_0)$ possède une action naturelle cyclique donnée par le déplacement de la première lettre d'un mot vers la fin, et nous montrons que la structure d'orbite de cette action est codée par la fonction génératrice pour l'indice majeur sur $R(w_0)$.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Christopher R. H. Hanusa ◽  
Brant C. Jones

International audience We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere. Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Daniela Battaglino ◽  
Jean-Marc Fédou ◽  
Simone Rinaldi ◽  
Samanta Socci

International audience A convex polyomino is $k$-$\textit{convex}$ if every pair of its cells can be connected by means of a $\textit{monotone path}$, internal to the polyomino, and having at most $k$ changes of direction. The number $k$-convex polyominoes of given semi-perimeter has been determined only for small values of $k$, precisely $k=1,2$. In this paper we consider the problem of enumerating a subclass of $k$-convex polyominoes, precisely the $k$-$\textit{convex parallelogram polyominoes}$ (briefly, $k$-$\textit{parallelogram polyominoes}$). For each $k \geq 1$, we give a recursive decomposition for the class of $k$-parallelogram polyominoes, and then use it to obtain the generating function of the class, which turns out to be a rational function. We are then able to express such a generating function in terms of the $\textit{Fibonacci polynomials}$. Un polyomino convexe est dit $k$-$\textit{convexe}$ lorsqu’on peut relier tout couple de cellules par un chemin monotone ayant au plus $k$ changements de direction. Le nombre de polyominos $k$-convexes n’est connu que pour les petites valeurs de $k = 1,2$. Dans cet article, nous énumérons la sous-classe des polyominos $k$-convexes qui sont également parallélogramme, que nous appelons $k$-$\textit{parallélogrammes}$. Nous donnons une décomposition récursive de la classe des polyominos $k$-parallélogrammes pour chaque $k$, et en déduisons la fonction génératrice, rationnelle, selon le demi-périmètre. Nous donnons enfin une expression de cette fonction génératrice en termes des $\textit{polynômes de Fibonacci}$.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give generating functions for $k$-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots $k$-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots $k$-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.


Sign in / Sign up

Export Citation Format

Share Document