scholarly journals A new method for computing asymptotics of diagonal coefficients of multivariate generating functions

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Alexander Raichev ◽  
Mark C. Wilson

International audience Let $\sum_{\mathbf{n} \in \mathbb{N}^d} F_{\mathbf{n}} \mathbf{x}^{\mathbf{n}}$ be a multivariate generating function that converges in a neighborhood of the origin of $\mathbb{C}^d$. We present a new, multivariate method for computing the asymptotics of the diagonal coefficients $F_{a_1n,\ldots,a_dn}$ and show its superiority over the standard, univariate diagonal method. Several examples are given in detail.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Adrien Boussicault ◽  
Simone Rinaldi ◽  
Samanta Socci

International audience We present a new method to obtain the generating functions for directed convex polyominoes according to several different statistics including: width, height, size of last column/row and number of corners. This method can be used to study different families of directed convex polyominoes: symmetric polyominoes, parallelogram polyominoes. In this paper, we apply our method to determine the generating function for directed $k$-convex polyominoes.We show it is a rational function and we study its asymptotic behavior. Nous présentons une nouvelle méthode générique pour obtenir facilement et rapidement les fonctions génératrices des polyominos dirigés convexes avec différentes combinaisons de statistiques : hauteur, largeur, longueur de la dernière ligne/colonne et nombre de coins. La méthode peut être utilisée pour énumérer différentes familles de polyominos dirigés convexes: les polyominos symétriques, les polyominos parallélogrammes. De cette façon, nouscalculons la fonction génératrice des polyominos dirigés $k$-convexes, nous montrons qu’elle est rationnelle et nous étudions son comportement asymptotique.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Christopher R. H. Hanusa ◽  
Brant C. Jones

International audience We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere. Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give generating functions for $k$-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots $k$-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots $k$-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Olya Mandelshtam ◽  
Xavier Viennot

International audience In this paper, we introduce therhombic alternative tableaux, whose weight generating functions providecombinatorial formulae to compute the steady state probabilities of the two-species ASEP. In the ASEP, there aretwo species of particles, oneheavyand onelight, on a one-dimensional finite lattice with open boundaries, and theparametersα,β, andqdescribe the hopping probabilities. The rhombic alternative tableaux are enumerated by theLah numbers, which also enumerate certainassembl ́ees of permutations. We describe a bijection between the rhombicalternative tableaux and these assembl ́ees. We also provide an insertion algorithm that gives a weight generatingfunction for the assemb ́ees. Combined, these results give a bijective proof for the weight generating function for therhombic alternative tableaux.


2019 ◽  
Vol 17 (02) ◽  
pp. 1950017 ◽  
Author(s):  
Javier Alvarez-Jimenez ◽  
J. David Vergara

We introduce a new method to compute the Quantum Geometric Tensor, this procedure allows us to compute the Quantum Information Metric and the Berry curvature perturbatively for a theory with an arbitrary interaction Hamiltonian. The calculation uses the generating function method, and it is illustrated with the harmonic oscillator with a linear and a quartic perturbation.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Masao Ishikawa ◽  
Anisse Kasraoui ◽  
Jiang Zeng

International audience An ordered partition of $[n]:=\{1,2,\ldots, n\}$ is a sequence of disjoint and nonempty subsets, called blocks, whose union is $[n]$. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix method. In particular, we prove several conjectures of Steingrímsson, which assert that the generating function of some statistics of ordered partitions give rise to a natural $q$-analogue of $k!S(n,k)$, where $S(n,k)$ is the Stirling number of the second kind.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Donatella Merlini

International audience We study some lattice paths related to the concept ofgenerating trees. When the matrix associated to this kind of trees is a Riordan array $D=(d(t),h(t))$, we are able to find the generating function for the total area below these paths expressed in terms of the functions $d(t)$ and $h(t)$.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Shuhei Kamioka

International audience A new triple product formulae for plane partitions with bounded size of parts is derived from a combinato- rial interpretation of biorthogonal polynomials in terms of lattice paths. Biorthogonal polynomials which generalize the little q-Laguerre polynomials are introduced to derive a new triple product formula which recovers the classical generating function in a triple product by MacMahon and generalizes the trace-type generating functions in double products by Stanley and Gansner.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sergi Elizalde ◽  
Marc Noy

International audience We use the cluster method in order to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. Our main tool is the cluster method of Goulden and Jackson. We also prove some that, for a large class of patterns, the inverse of the exponential generating function counting occurrences is an entire function, but we conjecture that it is not D-finite in general. On utilise la mèthode des clusters pour ènumèrer permutations qui èvitent motifs consècutifs. On redèmontre et on gènèralise d'une manière unifièe plusieurs rèsultats et on obtient de nouveaux rèsultats pour certains motifs de longueur 4 et 5, ainsi que pour certaines familles infinies de motifs. L'outil principal c'est la mèthode des clusters de Goulden et Jackson. On dèmontre aussi que, pour une grande classe de motifs, l'inverse de la sèrie gènèratrice exponentielle qui compte occurrences est une fonction entière, mais on conjecture qu'elle n'est pas D-finie en gènèral.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Miles Eli Jones ◽  
Jeffrey Remmel

International audience In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the symmetric group $S_n$ with no $τ$ -matches, and for any permutation $σ ∈S_n$, $LRMin(σ )$ is the number of left-to-right minima of $σ$ and $des(σ )$ is the number of descents of $σ$ . Our method does not compute $NM_τ (t,x,y)$ directly, but assumes that $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ where $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ so that $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. We then use the so-called homomorphism method and the combinatorial interpretation of $NM_τ (t,1,y)$ to develop recursions for the coefficient of $U_τ (t,y)$. Dans cet article, nous développons une nouvelle méthode pour calculer les fonctions génératrices de la forme $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ où τ est une permutation, $\mathcal{NM_n}(τ )$ est l'ensemble des permutations dans le groupe symétrique $S_n$ sans $τ$-matches, et pour toute permutation $σ ∈S_n$, $LRMin(σ )$ est le nombre de minima de gauche à droite de $σ$ et $des(σ )$ est le nombre de descentes de $σ$ . Notre méthode ne calcule pas $NM_τ (t,x,y)$ directement, mais suppose que $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ où $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ de sorte que $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. Nous utilisons ensuite la méthode dite "de l'homomorphisme'' et l'interprétation combinatoire de $NM_τ (t,1,y)$ pour développer des récursions sur le coefficient de $U_τ (t,y)$.


Sign in / Sign up

Export Citation Format

Share Document