scholarly journals Coxeter-like complexes

2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Eric Babson ◽  
Victor Reiner

International audience Motivated by the Coxeter complex associated to a Coxeter system (W,S), we introduce a simplicial regular cell complex Δ (G,S) with a G-action associated to any pair (G,S) where G is a group and S is a finite set of generators for G which is minimal with respect to inclusion. We examine the topology of Δ (G,S), and in particular the representations of G on its homology groups. We look closely at the case of the symmetric group S_n minimally generated by (not necessarily adjacent) transpositions, and their type-selected subcomplexes. These include not only the Coxeter complexes of type A, but also the well-studied chessboard complexes.

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Michael Chmutov ◽  
Pavlo Pylyavskyy ◽  
Elena Yudovina

International audience In his study of Kazhdan-Lusztig cells in affine type A, Shi has introduced an affine analog of Robinson- Schensted correspondence. We generalize the Matrix-Ball Construction of Viennot and Fulton to give a more combi- natorial realization of Shi's algorithm. As a biproduct, we also give a way to realize the affine correspondence via the usual Robinson-Schensted bumping algorithm. Next, inspired by Honeywill, we extend the algorithm to a bijection between extended affine symmetric group and triples (P, Q, ρ) where P and Q are tabloids and ρ is a dominant weight. The weights ρ get a natural interpretation in terms of the Affine Matrix-Ball Construction. Finally, we prove that fibers of the inverse map possess a Weyl group symmetry, explaining the dominance condition on weights.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Susanna Fishel ◽  
Monica Vazirani

International audience It is well-known that Catalan numbers $C_n = \frac{1}{ n+1} \binom{2n}{n}$ count the number of dominant regions in the Shi arrangement of type $A$, and that they also count partitions which are both n-cores as well as $(n+1)$-cores. These concepts have natural extensions, which we call here the $m$-Catalan numbers and $m$-Shi arrangement. In this paper, we construct a bijection between dominant regions of the $m$-Shi arrangement and partitions which are both $n$-cores as well as $(mn+1)$-cores. We also modify our construction to produce a bijection between bounded dominant regions of the $m$-Shi arrangement and partitions which are both $n$-cores as well as $(mn-1)$-cores. The bijections are natural in the sense that they commute with the action of the affine symmetric group. Il est bien connu que les nombres de Catalan $C_n = \frac{1}{ n+1} \binom{2n}{n}$ comptent non seulement le nombre de régions dominantes dans le Shi arrangement de type $A$ mais aussi les partitions qui sont à la fois $n$-cœur et $(n+1)$-cœur. Ces concepts ont des extensions naturelles, que nous appelons ici les nombres $m$-Catalan et le $m$-Shi arrangement. Dans cet article, nous construisons une bijection entre régions dominantes du $m$-Shi arrangement et les partitions qui sont à la fois $n$-cœur et $(nm+1)$-coeur. Nous modifions également notre construction pour produire une bijection entre régions dominantes bornées du $m$-Shi arrangement et les partitions qui sont à la fois $n$-coeur et $(mn-1)$-cœur. Ces bijections sont naturelles dans le sens où elles commutent avec l'action du groupe affine symétrique.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
T. Kyle Petersen

International audience For any Coxeter system (W, S) of rank n, we introduce an abstract boolean complex (simplicial poset) of dimension 2n − 1 which contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples (J,w,K), where J and K are subsets of the set S of simple generators, and w is a minimal length representative for the double parabolic coset WJ wWK . There is exactly one maximal face for each element of the group W . The complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case, a natural refinement of the h-polynomial is given by the “two-sided” W -Eulerian polynomial, i.e., the generating function for the joint distribution of left and right descents in W .


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Jean-Philippe Labbé ◽  
Christian Stump

International audience We present a family of simplicial complexes called \emphmulti-cluster complexes. These complexes generalize the concept of cluster complexes, and extend the notion of multi-associahedra of types ${A}$ and ${B}$ to general finite Coxeter groups. We study combinatorial and geometric properties of these objects and, in particular, provide a simple combinatorial description of the compatibility relation among the set of almost positive roots in the cluster complex. Nous présentons une famille de complexes simpliciaux appelés \emphcomplexes des multi-amas. Ces complexes généralisent le concept de complexes des amas et étendent la notion de multi-associaèdre de type ${A}$ et ${B}$ aux groupes de Coxeter finis. Nous étudions des propriétés combinatoires et géométriques de ces objets et, en particulier nous fournissons une description combinatoire simple de la relation de compatibilité sur l'ensemble des racines presque positives du complexe des amas.


10.37236/9168 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Jennifer Morse ◽  
Jianping Pan ◽  
Wencin Poh ◽  
Anne Schilling

We introduce a type $A$ crystal structure on decreasing factorizations of fully-commu\-tative elements in the 0-Hecke monoid which we call $\star$-crystal. This crystal is a $K$-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the $\star$-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Christian Stump ◽  
Hugh Thomas ◽  
Nathan Williams

International audience The main objects of noncrossing Catalan combinatorics associated to a finite Coxeter system are noncross- ing partitions, sortable elements, and cluster complexes. The first and the third of these have known Fuss–Catalan generalizations. We provide new viewpoints for these, introduce a corresponding generalization of sortable elements as elements in the positive Artin monoid, and show how this perspective ties together all three generalizations.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes Type A Weyl group multiple Dirichlet series. It begins by defining the basic shape of the class of Weyl group multiple Dirichlet series. To do so, the following parameters are introduced: Φ‎, a reduced root system; n, a positive integer; F, an algebraic number field containing the group μ‎₂ₙ of 2n-th roots of unity; S, a finite set of places of F containing all the archimedean places, all places ramified over a ℚ; and an r-tuple of nonzero S-integers. In the language of representation theory, the weight of the basis vector corresponding to the Gelfand-Tsetlin pattern can be read from differences of consecutive row sums in the pattern. The chapter considers in this case expressions of the weight of the pattern up to an affine linear transformation.


Sign in / Sign up

Export Citation Format

Share Document