scholarly journals A lattice point counting generalisation of the Tutte polynomial

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Amanda Cameron ◽  
Alex Fink

International audience The Tutte polynomial for matroids is not directly applicable to polymatroids. For instance, deletion- contraction properties do not hold. We construct a polynomial for polymatroids which behaves similarly to the Tutte polynomial of a matroid, and in fact contains the same information as the Tutte polynomial when we restrict to matroids. This polynomial is constructed using lattice point counts in the Minkowski sum of the base polytope of a polymatroid and scaled copies of the standard simplex. We also show that, in the matroid case, our polynomial has coefficients of alternating sign, with a combinatorial interpretation closely tied to the Dawson partition.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Matthieu Josuat-Vergès

International audience The q-semicircular law as introduced by Bożejko and Speicher interpolates between the Gaussian law and the semicircular law, and its moments have a combinatorial interpretation in terms of matchings and crossings. We prove that the cumulants of this law are, up to some factor, polynomials in q with nonnegative coefficients. This is done by showing that they are obtained by an enumeration of connected matchings, weighted by the evaluation at (1,q) of a Tutte polynomial. The two particular cases q=0 and q=2 have also alternative proofs, related with the fact that these particular evaluation of the Tutte polynomials count some orientations on graphs. Our methods also give a combinatorial model for the cumulants of the free Poisson law. La loi q-semicirculaire introduite par Bożejko et Speicher interpole entre la loi gaussienne et la loi semi-circulaire, et ses moments ont une interprétation combinatoire en termes de couplages et croisements. Nous prouvons que les cumulants de cette loi sont, à un facteur près, des polynômes en q à coefficients positifs. La méthode consiste à obtenir ces cumulants par une énumération de couplages connexes, pondérés par l’évaluation en (1,q) d'un polynôme de Tutte. Les cas particuliers q=0 et q=2 ont une preuve alternative, reliè au fait que des évaluations particulières du polynôme de Tutte comptent certaines orientations de graphes. Nos méthodes donnent aussi un modèle combinatoire aux cumulants de la loi de Poisson libre.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Michele D'Adderio ◽  
Luca Moci

International audience We introduce the notion of arithmetic matroid, whose main example is provided by a list of elements in a finitely generated abelian group. We study the representability of its dual, and, guided by the geometry of toric arrangements, we give a combinatorial interpretation of the associated arithmetic Tutte polynomial, which can be seen as a generalization of Crapo's formula. Nous introduisons la notion de matroï de arithmètique, dont le principal exemple est donnè par une liste d'élèments dans un groupe abèlien fini. Nous ètudions la reprèsentabilitè de son dual, et, guidè par la gèomètrie des arrangements toriques, nous donnons une interprètation combinatoire du polynôme de Tutte arithmètique associèe, ce qui peut être vu comme une gènèralisation de la formule de Crapo.


Author(s):  
D. V. Gribanov ◽  
N. Yu. Zolotykh
Keyword(s):  

2012 ◽  
Vol 52 (28) ◽  
pp. 333-340 ◽  
Author(s):  
Vagner Cavarzere ◽  
Thiago Vernaschi Vieira da Costa ◽  
Luís Fábio Silveira

Due to rapid and continuous deforestation, recent bird surveys in the Atlantic Forest are following rapid assessment programs to accumulate significant amounts of data during short periods of time. During this study, two surveying methods were used to evaluate which technique rapidly accumulated most species (> 90% of the estimated empirical value) at lowland Atlantic Forests in the state of São Paulo, southeastern Brazil. Birds were counted during the 2008-2010 breeding seasons using 10-minute point counts and 10-species lists. Overall, point counting detected as many species as lists (79 vs. 83, respectively), and 88 points (14.7 h) detected 90% of the estimated species richness. Forty-one lists were insufficient to detect 90% of all species. However, lists accumulated species faster in a shorter time period, probably due to the nature of the point count method in which species detected while moving between points are not considered. Rapid assessment programs in these forests will rapidly detect more species using 10-species lists. Both methods shared 63% of all forest species, but this may be due to spatial and temporal mismatch between samplings of each method.


2018 ◽  
Vol 2020 (18) ◽  
pp. 5611-5629 ◽  
Author(s):  
Xin Zhang

Abstract Let $\Lambda <SL(2,\mathbb{Z})$ be a finitely generated, nonelementary Fuchsian group of the 2nd kind, and $\mathbf{v},\mathbf{w}$ be two primitive vectors in $\mathbb{Z}^2\!-\!\mathbf{0}$. We consider the set $\mathcal{S}\!=\!\{\left \langle \mathbf{v}\gamma ,\mathbf{w}\right \rangle _{\mathbb{R}^2}\!:\!\gamma\! \in\! \Lambda \}$, where $\left \langle \cdot ,\cdot \right \rangle _{\mathbb{R}^2}$ is the standard inner product in $\mathbb{R}^2$. Using Hardy–Littlewood circle method and some infinite co-volume lattice point counting techniques developed by Bourgain, Kontorovich, and Sarnak, together with Gamburd’s 5/6 spectral gap, we show that if $\Lambda $ has parabolic elements, and the critical exponent $\delta $ of $\Lambda $ exceeds 0.998317, then a density-one subset of all admissible integers (i.e., integers passing all local obstructions) are actually in $\mathcal{S}$, with a power savings on the size of the exceptional set (i.e., the set of admissible integers failing to appear in $\mathcal{S}$). This supplements a result of Bourgain–Kontorovich, which proves a density-one statement for the case when $\Lambda $ is free, finitely generated, has no parabolics, and has critical exponent $\delta>0.999950$.


2019 ◽  
Vol 7 ◽  
Author(s):  
SPENCER BACKMAN ◽  
MATTHEW BAKER ◽  
CHI HO YUEN

Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$ . This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$ ). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$ , many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$ , and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$ . (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$ ) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$ .) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$ ; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$ .


2011 ◽  
Vol 121 (2) ◽  
pp. 229-244
Author(s):  
DANIEL J NORDMAN ◽  
SOUMENDRA N LAHIRI

2004 ◽  
Vol 38 (4) ◽  
pp. 1273-1302 ◽  
Author(s):  
Jesús A. De Loera ◽  
Raymond Hemmecke ◽  
Jeremiah Tauzer ◽  
Ruriko Yoshida

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Gaku Liu

International audience In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each mixed Eulerian number enumerates a certain set of permutations in $S_n$. We also prove several new properties of mixed Eulerian numbers using our methods. Finally, we consider a type $B$ analogue of mixed Eulerian numbers and give an analogous combinatorial interpretation for these numbers. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux coefficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations $S_n$. Nous établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir, nous introduisons une généralisation en type $B$ des nombres Eulériens mixtes, et nous en donnons une interprétation combinatoire analogue.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience If $f(x)$ is an invertible power series we may form the symmetric function $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ which is called a formal group law. We give a number of examples of power series $f(x)$ that are ordinary generating functions for combinatorial objects with a recursive structure, each of which is associated with a certain hypergraph. In each case, we show that the corresponding formal group law is the sum of the chromatic symmetric functions of these hypergraphs by finding a combinatorial interpretation for $f^{-1}(x)$. We conjecture that the chromatic symmetric functions arising in this way are Schur-positive. Si $f(x)$ est une série entière inversible, nous pouvons former la fonction symétrique $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ que nous appelons une loi de groupe formel. Nous donnons plusieurs exemples de séries entières $f(x)$ qui sont séries génératrices ordinaires pour des objets combinatoires avec une structure récursive, chacune desquelles est associée à un certain hypergraphe. Dans chaque cas, nous donnons une interprétation combinatoire à $f^{-1}(x)$, ce qui nous permet de montrer que la loi de groupe formel correspondante est la somme des fonctions symétriques chromatiques de ces hypergraphes. Nous conjecturons que les fonctions symétriques chromatiques apparaissant de cette manière sont Schur-positives.


Sign in / Sign up

Export Citation Format

Share Document