scholarly journals New Intelligent Control of Auto-self Defensive Unmanned Aerial Vehicle

2021 ◽  
Vol 15 ◽  
pp. 23-26
Author(s):  
Marwa A. El-Diwiny ◽  
Abou-Hashema M. El-Sayed

This paper handle a new terminology of the field of the unmanned aerial vehicle is Auto-self defensive UAV, by using new configuration of x-band Doppler surface distribution. The aim of this research is to make UAV can avoid any directed missiles at small time delay before the collision. The intelligent control will process the data of the hypothetical missiles by using supercomputing and send it to the inertial navigation system to correct the path of UAV every sample time against the missile. The goal is to make intelligent UAV that can maneuver the missile and never collide with it.

The navigation systems as part of the navigation complex of a high-precision unmanned aerial vehicle in conditions of different altitude flight are investigated. The working contours of the navigation complex with correction algorithms for an unmanned aerial vehicle during high-altitude and low-altitude flights are formed. Mathematical models of inertial navigation system errors used in non-linear and linear Kalman filters are presented. The results of mathematical modeling demonstrate the effectiveness of the working contours effectiveness of the navigation complex with correction algorithms. Keywords high-precision unmanned aerial vehicle; navigation complex; multi-altitude flight; work circuit; passive noises; Kalman filter; correction


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


Author(s):  
Salim Ibrir

Time-delay systems is a special class of dynamical systems that are frequently present in many fields of engineering. It has been shown in the literature that the existence of a stabilizing observer-based controller is related to delay-dependent conditions that are generally satisfied for a small time delay. Motivating works towards reducing the conservatism of the results are among the on-going research topics especially when partial-state measurements are imposed. This paper investigates the problem of observer-based stabilization of a class of time-delay nonlinear systems written in triangular form. First, we show that a delay nonlinear observer is globally convergent under the global Lipschitz condition of the system nonlinearity. Then, it is shown that a parameterized linear feedback that uses the observer states can stabilize the system whatever the size of the delay. Illustrative example is provided to approve the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document