scholarly journals Effects of the Porous Microstructure on the Drag Coefficient in Flow of a Fluid with Pressure-Dependent Viscosity

2021 ◽  
Vol 15 ◽  
pp. 136-144
Author(s):  
M.S. Abu Zaytoon ◽  
S. Jayyousi Dajani ◽  
M.H. Hamdan

Equations governing the flow of a fluid with pressure-dependent viscosity through an isotropic porous structure are derived using the method of intrinsic volume averaging. Viscosity of the fluid is assumed to be a variable function of pressure, and the effects of the porous microstructure are modelled and included in the pressure-dependent drag coefficient. Five friction factors relating to five different microstructures are used in this work

2016 ◽  
Vol 9 (6) ◽  
pp. 3101-3107
Author(s):  
Igor Pažanin ◽  
Marcone Pereira ◽  
Francisco Javier Suarez-Grau ◽  
◽  
◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 204-212
Author(s):  
M. S. Abu Zaytoon ◽  
Yiyun (Lisa) Xiao ◽  
M. H. Hamdan

In this work, we consider flow of a fluid with pressure-dependent viscosity down an inclined porous plane with variable permeability that is incorporated in the pressure-dependent drag coefficient. We provide a solution to a recently developed flow model, and study the effects of flow and domain parameters (viscosity control parameter, permeability proportionality constant, and angle of inclination) on the flow characteristics. Suitability of a variable permeability model that considers permeability proportional to the flow velocity is investigated. Results show that large values of the permeability proportionality constant have little or no effects on flow characteristics.


Author(s):  
S. Jayyousi Dajani ◽  
M. S. Abu Zaytoon ◽  
M. H. Hamdan

Equations governing the flow of a fluid-particle mixture with variable viscosity through a porous structure are developed. Method of intrinsic volume averaging is used to average Saffman’s dusty gas equations. A modelling flexibility is offered in this work by introducing a dust-phase partial pressure in the governing equations, interpreted as the pressure necessary to maintain a uniform particle distribution in the flow field. Viscosity of the fluid-particle mixture is assumed to be variable, with variations in viscosity being due to fluid pressure. Particles are assumed spherical and Stokes’ coefficient of resistance is expressed in terms of the pressure-dependent fluid viscosity. Both Darcy resistance and the Forchheimer micro-inertial effects are accounted for in the developed model


Author(s):  
Hanumagowda Bannihalli Naganagowda ◽  
Sreekala Cherkkarathandayan Karappan

The aim of this paper is to presents a theoretical analysis on squeeze-film characteristics of a rough porous circular stepped plate in the vicinity of pressure-dependent viscosity and lubrication by micropolar fluids. A closed-form expression for non-dimensional pressure, load, and squeezing time is derived based on Eringen’s theory, Darcy’s equation, and Christensen’s stochastic approach. Results indicate that the effects of pressure-dependent viscosity, surface roughness, and micropolar fluids play an important role in increasing the load-carrying capacity and squeezing time, whereas the presence of porous media decreases the load-carrying capacity and squeezing time of the rough porous circular stepped plates.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 334
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Tehseen Abbas ◽  
Rahmat Ellahi

Some unsteady motions of incompressible upper-convected Maxwell (UCM) fluids with exponential dependence of viscosity on the pressure are analytically studied. The fluid motion between two infinite horizontal parallel plates is generated by the lower plate, which applies time-dependent shear stresses to the fluid. Exact expressions, in terms of standard Bessel functions, are established both for the dimensionless velocity fields and the corresponding non-trivial shear stresses using the Laplace transform technique and suitable changes of the unknown function and the spatial variable in the transform domain. They represent the first exact solutions for unsteady motions of non-Newtonian fluids with pressure-dependent viscosity. The similar solutions corresponding to the flow of the same fluids due to an exponential shear stress on the boundary as well as the solutions of ordinary UCM fluids performing the same motions are obtained as limiting cases of present results. Furthermore, known solutions for unsteady motions of the incompressible Newtonian fluids with/without pressure-dependent viscosity induced by oscillatory or constant shear stresses on the boundary are also obtained as limiting cases. Finally, the influence of physical parameters on the fluid motion is graphically illustrated and discussed. It is found that fluids with pressure-dependent viscosity flow are slower when compared to ordinary fluids.


Author(s):  
C. Bagci ◽  
C. J. McClure ◽  
S. K. Rajavenkateswaran

Abstract The article investigates pocket bearings with contoured profiles of exponential forms on both surfaces inside and outside of the step boundary forming hydro-dynamic action surfaces, and develops optimum design data yielding efficient slider bearings with small pockets with higher load capacities than conventional pocket bearings. In the case of a pocket bearings, in addition to the Reynolds equation used for the regions inside and outside the pocket, the continuity equation along the pocket boundary is satisfied to form the complete model of the bearing. The optimum design data includes dimensionless load-, flow-, temperature rise-, power loss-, stiffness-, and the coefficient of friction factors. Incompressible lubricant with temperature dependent viscosity is considered. Detailed study of conventional pocket bearings with planar surfaces is included. Some optimum exponential pocket bearings yield up to 561 percent increase in load capacity as compared to the conventional tapered bearings.


Author(s):  
Jung Gu Lee ◽  
Alan Palazzolo

The Reynolds equation plays an important role for predicting pressure distributions for fluid film bearing analysis, One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. However, in elastohydrodynamic lubrication (EHL) where the lubricant is subjected to extremely high pressure, this assumption should be reconsidered. The 2D modified Reynolds equation is derived in this study including pressure-dependent viscosity, The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the ball bearing case (elastic solids). The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations.


Sign in / Sign up

Export Citation Format

Share Document