scholarly journals Decision Trees with Soft Numbers

Author(s):  
Oren Fivel ◽  
Moshe Klein ◽  
Oded Maimon

In this paper we develop the foundation of a new theory for decision trees based on new modeling of phenomena with soft numbers. Soft numbers represent the theory of soft logic that addresses the need to combine real processes and cognitive ones in the same framework. At the same time soft logic develops a new concept of modeling and dealing with uncertainty: the uncertainty of time and space. It is a language that can talk in two reference frames, and also suggest a way to combine them. In the classical probability, in continuous random variables there is no distinguishing between the probability involving strict inequality and non-strict inequality. Moreover, a probability involves equality collapse to zero, without distinguishing among the values that we would like that the random variable will have for comparison. This work presents Soft Probability, by incorporating of Soft Numbers into probability theory. Soft Numbers are set of new numbers that are linear combinations of multiples of ”ones” and multiples of ”zeros”. In this work, we develop a probability involving equality as a ”soft zero” multiple of a probability density function (PDF). We also extend this notion of soft probabilities to the classical definitions of Complements, Unions, Intersections and Conditional probabilities, and also to the expectation, variance and entropy of a continuous random variable, condition being in a union of disjoint intervals and a discrete set of numbers. This extension provides information regarding to a continuous random variable being within discrete set of numbers, such that its probability does not collapse completely to zero. When we developed the notion of soft entropy, we found potentially another soft axis, multiples of 0log(0), that motivates to explore the properties of those new numbers and applications. We extend the notion of soft entropy into the definition of Cross Entropy and Kullback–Leibler-Divergence (KLD), and we found that a soft KLD is a soft number, that does not have a multiple of 0log(0). Based on a soft KLD, we defined a soft mutual information, that can be used as a splitting criteria in decision trees with data set of continuous random variables, consist of single samples and intervals.

Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 5931-5947
Author(s):  
Hatami Mojtaba ◽  
Alamatsaz Hossein

In this paper, we propose a new transformation of circular random variables based on circular distribution functions, which we shall call inverse distribution function (id f ) transformation. We show that M?bius transformation is a special case of our id f transformation. Very general results are provided for the properties of the proposed family of id f transformations, including their trigonometric moments, maximum entropy, random variate generation, finite mixture and modality properties. In particular, we shall focus our attention on a subfamily of the general family when id f transformation is based on the cardioid circular distribution function. Modality and shape properties are investigated for this subfamily. In addition, we obtain further statistical properties for the resulting distribution by applying the id f transformation to a random variable following a von Mises distribution. In fact, we shall introduce the Cardioid-von Mises (CvM) distribution and estimate its parameters by the maximum likelihood method. Finally, an application of CvM family and its inferential methods are illustrated using a real data set containing times of gun crimes in Pittsburgh, Pennsylvania.


Author(s):  
M. Vidyasagar

This chapter provides an introduction to some elementary aspects of information theory, including entropy in its various forms. Entropy refers to the level of uncertainty associated with a random variable (or more precisely, the probability distribution of the random variable). When there are two or more random variables, it is worthwhile to study the conditional entropy of one random variable with respect to another. The last concept is relative entropy, also known as the Kullback–Leibler divergence, which measures the “disparity” between two probability distributions. The chapter first considers convex and concave functions before discussing the properties of the entropy function, conditional entropy, uniqueness of the entropy function, and the Kullback–Leibler divergence.


2018 ◽  
Vol 17 (1) ◽  
pp. 09
Author(s):  
O. D. Q. de Oliveira Filho ◽  
A. M. Araújo ◽  
W. F. A. Borges ◽  
A. A. C. Silva ◽  
C. C. A. Bezerra ◽  
...  

The aim of the present work is to perform an analysis of both Weibull parameters k and c for wind power generation so that one can have an idea of how the mechanisms of wind energy estimation work and build a better understanding of these parameters. This paper covers aspects from the definition of continuous random variable to the analysis of the scale (c) and shape (k) parameters themselves. Mathematical and physical analysis will be performed and finally, a comparison between the parameters and their influence on wind analysis will be presented.


2020 ◽  
pp. 168-173
Author(s):  
Аалиева Бурул

Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Свойства функции распределения обучения и доказательства. Х может быть, чтобы принять параметры диапазона значений (а, б), что функция распределения вероятностей равна приращению. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Hence, the characteristic of the probability distribution of discrete random variables Non-decreasing functions, ∫ _ (- ∞) ^ ∞▒ 〖P (x) ax = 1〗. In the case of an individual, if the values of a random variable (a, b) are located within ∫_a ^ b▒ 〖P (x) ax = 1〗 Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative. DOI: 10.35254/bhu.2019.50.1 ВЕСТНИК БИШКЕКСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. No4(50) 2019 169 Аннотация: Бөлүштүрүү функциясын, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктарын бѳлүштүрүүнүн жиктелиш функциясы (ыктымалдуулуктун тыгыздыгы), ыктымалдуулуктарды бир калыпта бѳлуштүрүү законун аныктоо. Бөлүштүрүү функциясынын касиеттерин окутуу, далилдөө. X кокус чоңдугунун кабыл алууга мүмкүн болгон маанилери (a,b) интервалында жаткандыгынын ыктымалдуулугу бөлүштүрүү функциясынын өсүндүсүнө барабар. X кокус чондугу PP(xx < xx1) ыктымалдуулукта x ден кичине маанилерди кабыл алат; X кокус чондугу xx1 ≤ xx < xx2барабарсыздыктын ыктымалдуулугу PP(xx1 ≤ xx < xx2) түрүндө канааттандырат. Үзгүлтүксүз кокус чоңдуктарды мүнөздөөнүн дагы бир башкача жолу ыктымалдуулукту бөлүштүрүүнүн жиктелиш функциясын киргизүү, тутамдык функциясынын биринчи туундусун табуу. Демек,тутамдык функция жиктелиш функциясынын баштапкы функциясы болорун, дискреттик кокус чондуктардын ыктымалдуулуктарынын бөлүштүрүүсүн мунөздөө. Жиктелиш функциясы кемибөөчү функция, ∫ ff(xx)dddd = 1 ∞ −∞ . Жекече учурда, эгерде кокус чоңдуктардын мүмкүн болгон маанилери (a,b) аралыгында жайгашса, анда � ff(xx)dddd = 1 bb aa Түйүндүү сѳздѳр: Бөлүштурүү функциясы, үзгүлтүксүз кокус чоңдуктардын ыктымалдуулуктары, дискреттик кокус чоңдук, бөлүштүрүүнүн интегралдык функциясы, баштапкы функция. Аннотация: Определять вид непрерывной случайной величины, находить вероятность попадания случайной величины в заданный интервал по заданной функции распределения, уметь находить плотность распределения и равномерное распределения. Еще одно отличие характеристики случайных величин непрерывного действия-включение функции классификации распределения вероятностей, обнаружение первого производного функции последовательности. Следовательно, характеристика распределения вероятностей дискретных случайных величин. Ключевые слова: Функция распределения, вероятность непрерывной случайной величины, дискретная случайная величина, интегральная функция распределения, первообразная. Annotation: Determine the type of random variable, find the probability of a random variable falling into a given interval by a given distribution function, be able to find the distribution density and uniform distribution. Properties of learning distribution function and evidence. X maybe to take the parameters of the range of values (a, b), that the probability distribution function is equal to the increment. Another difference in the characterization of continuous random variables is the inclusion of the classification function of the probability distribution, the detection of the first derivative of the sequence function. Keywords: Distribution function, probability of continuous random variable, discrete random variable, integral distribution function, antiderivative.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 63 ◽  
Author(s):  
Michel Broniatowski ◽  
Jana Jurečková ◽  
Ashok Moses ◽  
Emilie Miranda

This paper focuses on test procedures under corrupted data. We assume that the observations Z i are mismeasured, due to the presence of measurement errors. Thus, instead of Z i for i = 1 , … , n, we observe X i = Z i + δ V i, with an unknown parameter δ and an unobservable random variable V i. It is assumed that the random variables Z i are i.i.d., as are the X i and the V i. The test procedure aims at deciding between two simple hyptheses pertaining to the density of the variable Z i, namely f 0 and g 0. In this setting, the density of the V i is supposed to be known. The procedure which we propose aggregates likelihood ratios for a collection of values of δ. A new definition of least-favorable hypotheses for the aggregate family of tests is presented, and a relation with the Kullback-Leibler divergence between the sets f δ δ and g δ δ is presented. Finite-sample lower bounds for the power of these tests are presented, both through analytical inequalities and through simulation under the least-favorable hypotheses. Since no optimality holds for the aggregation of likelihood ratio tests, a similar procedure is proposed, replacing the individual likelihood ratio by some divergence based test statistics. It is shown and discussed that the resulting aggregated test may perform better than the aggregate likelihood ratio procedure.


2002 ◽  
Vol 14 (1) ◽  
pp. 217-239 ◽  
Author(s):  
Janne Sinkkonen ◽  
Samuel Kaski

We study the problem of learning groups or categories that are local in the continuous primary space but homogeneous by the distributions of an associated auxiliary random variable over a discrete auxiliary space. Assuming that variation in the auxiliary space is meaningful, categories will emphasize similarly meaningful aspects of the primary space. From a data set consisting of pairs of primary and auxiliary items, the categories are learned by minimizing a Kullback-Leibler divergence-based distortion between (implicitly estimated) distributions of the auxiliary data, conditioned on the primary data. Still, the categories are defined in terms of the primary space. An online algorithm resembling the traditional Hebb-type competitive learning is introduced for learning the categories. Minimizing the distortion criterion turns out to be equivalent to maximizing the mutual information between the categories and the auxiliary data. In addition, connections to density estimation and to the distributional clustering paradigm are outlined. The method is demonstrated by clustering yeast gene expression data from DNA chips, with biological knowledge about the functional classes of the genes as the auxiliary data.


Stats ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 371-387
Author(s):  
Peter Zörnig

The popular concept of slash distribution is generalized by considering the quotient Z = X/Y of independent random variables X and Y, where X is any continuous random variable and Y has a general beta distribution. The density of Z can usually be expressed by means of generalized hypergeometric functions. We study the distribution of Z for various parent distributions of X and indicate a possible application in finance.


1991 ◽  
Vol 14 (4) ◽  
pp. 797-802 ◽  
Author(s):  
Tien-Chung Hu

LetXbe a real valued random variable withE|X|r+δ<∞for some positive integerrand real number,δ,0<δ≤r, and let{X,X1,X2,…}be a sequence of independent, identically distributed random variables. In this note, we prove that, for almost allw∈Ω,μr;n*(w)→μrwith probability1. iflimn→∞infm(n)n−β>0for someβ>r−δr+δ, whereμr;n*is the bootstraprthsample moment of the bootstrap sample some with sample sizem(n)from the data set{X,X1,…,Xn}andμris therthmoment ofX. The results obtained here not only improve on those of Athreya [3] but also the proof is more elementary.


2019 ◽  
Author(s):  
Tomohiro Nishiyama

The variance and the entropy power of a continuous random variable are bounded from below by the reciprocal of its Fisher information through the Cram\'{e}r-Rao bound and the Stam's inequality respectively. In this note, we introduce the Fisher information for discrete random variables and derive the discrete Cram\'{e}r-Rao-type bound and the discrete Stam's inequality.


2018 ◽  
Vol 26 (1) ◽  
pp. 1-9
Author(s):  
Peter Jaeger

Summary Using the Mizar system [1], [5], we start to show, that the Call-Option, the Put-Option and the Straddle (more generally defined as in the literature) are random variables ([4], p. 15), see (Def. 1) and (Def. 2). Next we construct and prove the simple random variables ([2], p. 14) in (Def. 8). In the third section, we introduce the definition of arbitrage opportunity, see (Def. 12). Next we show, that this definition can be characterized in a different way (Lemma 1.3. in [4], p. 5), see (17). In our formalization for Lemma 1.3 we make the assumption that ϕ is a sequence of real numbers (there are only finitely many valued of interest, the values of ϕ in Rd). For the definition of almost sure with probability 1 see p. 6 in [2]. Last we introduce the risk-neutral probability (Definition 1.4, p. 6 in [4]), here see (Def. 16). We give an example in real world: Suppose you have some assets like bonds (riskless assets). Then we can fix our price for these bonds with x for today and x · (1 + r) for tomorrow, r is the interest rate. So we simply assume, that in every possible market evolution of tomorrow we have a determinated value. Then every probability measure of Ωfut1 is a risk-neutral measure, see (21). This example shows the existence of some risk-neutral measure. If you find more than one of them, you can determine – with an additional conidition to the probability measures – whether a market model is arbitrage free or not (see Theorem 1.6. in [4], p. 6.) A short graph for (21): Suppose we have a portfolio with many (in this example infinitely many) assets. For asset d we have the price π(d) for today, and the price π(d) (1 + r) for tomorrow with some interest rate r > 0. Let G be a sequence of random variables on Ωfut1, Borel sets. So you have many functions fk : {1, 2, 3, 4}→ R with G(k) = fk and fk is a random variable of Ωfut1, Borel sets. For every fk we have fk(w) = π(k)·(1+r) for w {1, 2, 3, 4}. $$\matrix{ {Today} & {Tomorrow} \cr {{\rm{only}}\,{\rm{one}}\,{\rm{scenario}}} & {\left\{ {\matrix{ {w_{21} = \left\{ {1,2} \right\}} \hfill \cr {w_{22} = \left\{ {3,4} \right\}} \hfill \cr } } \right.} \cr {{\rm{for}}\,{\rm{all}}\,d \in N\,{\rm{holds}}\,\pi \left( d \right)} & {\left\{ {\matrix{ {f_d \left( w \right) = G\left( d \right)\left( w \right) = \pi \left( d \right) \cdot \left( {1 + r} \right),} \hfill \cr {w \in w_{21} \,or\,w \in w_{22} ,} \hfill \cr {r > 0\,{\rm{is}}\,{\rm{the}}\,{\rm{interest}}\,{\rm{rate}}.} \hfill \cr } } \right.} \cr }$$ Here, every probability measure of Ωfut1 is a risk-neutral measure.


Sign in / Sign up

Export Citation Format

Share Document