Anabolic reactions of skeletal muscles in mice following plant- and animal-based protein intake during resistance exercise

2021 ◽  
Vol 39 (3) ◽  
pp. 313-322
Author(s):  
Dong-Yeon Kim ◽  
Sung-Hwan Ahn ◽  
Chang-Sun Yoon ◽  
Joon-Yong Cho
2019 ◽  
Vol 2 (5) ◽  
pp. 224-232
Author(s):  
Mateus Teixeira Tomaz ◽  
Wiliam C.B. Regis

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1087 ◽  
Author(s):  
Jean-François Huneau ◽  
Olivier L. Mantha ◽  
Dominique Hermier ◽  
Véronique Mathé ◽  
Guillaume Galmiche ◽  
...  

A growing body of evidence supports a role for tissue-to-diet 15N and 13C discrimination factors (Δ15N and Δ13C), as biomarkers of metabolic adaptations to nutritional stress, but the underlying mechanisms remain poorly understood. In obese rats fed ad libitum or subjected to gradual caloric restriction (CR), under a maintained protein intake, we measured Δ15N and Δ13C levels in tissue proteins and their constitutive amino acids (AA) and the expression of enzymes involved in the AA metabolism. CR was found to lower protein mass in the intestine, liver, heart and, to a lesser extent, some skeletal muscles. This was accompanied by Δ15N increases in urine and the protein of the liver and plasma, but Δ15N decreases in the proteins of the heart and the skeletal muscles, alongside Δ13C decreases in all tissue proteins. In Lys, Δ15N levels rose in the plasma, intestine, and some muscles, but fell in the heart, while in Ala, and to a lesser extent Glx and Asx, Δ13C levels fell in all these tissues. In the liver, CR was associated with an increase in the expression of genes involved in AA oxidation. During CR, the parallel rises of Δ15N in urine, liver, and plasma proteins reflected an increased AA catabolism occurring at the level of the liver metabolic branch point, while Δ15N decreases in cardiac and skeletal muscle proteins indicated increased protein and AA catabolism in these tissues. Thus, an increased protein and AA catabolism results in opposite Δ15N effects in splanchnic and muscular tissues. In addition, the Δ13C decrease in all tissue proteins, reflects a reduction in carbohydrate (CHO) oxidation and routing towards non-indispensable AA, to achieve fuel economy.


2013 ◽  
Vol 144 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Tim Snijders ◽  
Lex B. Verdijk ◽  
Bryon R. McKay ◽  
Joey S.J. Smeets ◽  
Janneau van Kranenburg ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1235 ◽  
Author(s):  
Sara Y. Oikawa ◽  
Ravninder Bahniwal ◽  
Tanya M. Holloway ◽  
Changhyun Lim ◽  
Jonathan C. McLeod ◽  
...  

Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.


Author(s):  
Michael Mazzulla ◽  
Sidney Abou Sawan ◽  
Eric Williamson ◽  
Sarkis J Hannaian ◽  
Kimberly A Volterman ◽  
...  

ABSTRACT Background Dietary protein supports resistance exercise–induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance. Objective We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men. Methods Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg−1·d−1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20–3.00 g·kg−1·d−1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis − PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine. Results Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg−1·d−1) (r2 = 0.64; P ˂ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg−1·d−1) (r2 = 0.63; P ˂ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P ˂ 0.01) across the range of protein intakes. Conclusions A breakpoint protein intake of ∼2.0 g·kg−1·d−1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at clinicaltrials.gov as NCT03696264.


2014 ◽  
Vol 2 (8) ◽  
pp. e12112 ◽  
Author(s):  
Randall F. D'Souza ◽  
James F. Markworth ◽  
Vandre C. Figueiredo ◽  
Paul A. Della Gatta ◽  
Aaron C. Petersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document