scholarly journals Organic-Matter Activity of Some Typical Soils of Puerto Rico

1969 ◽  
Vol 39 (2) ◽  
pp. 65-76
Author(s):  
Fernando Abruña-Rodríguez ◽  
José Vicente-Chandler

The exchange capacity of the organic matter in typical soils of Puerto Rico was evaluated from: (1) The variation in the exchange capacity of soil samples following destruction of the organic matter, (2) titration curves of extracted organic matter, (3) and the correlations between exchange capacity and organic-matter content of soil samples. The first method was the most practical and gave fairly accurate results. The second method gave results which were in all cases too high. The third method, though probably the most accurate, is impractical. Results obtained with the first and third methods were similar. The exchange capacity of the organic matter varied rather widely, but was generally between 100 and 150 m.e. per 100 gm. On the average it accounted for about 25 percent of the total exchange capacity of the soils studied. The organic matter removed by flotation had the highest exchange capacity and the more readily oxidizable portions generally appeared to be the most active. This suggests the importance of conserving the more readily lost portions of the soil organic matter. A considerable portion of the soil organic matter was extremely resistant to oxidation, had a narrow C:N ratio, and apparently little exchange capacity. This suggests a close association between the organic matter and the inorganic soil colloids. The marked resistance to oxidation of a considerable portion of the organic matter may partly explain the high contents found even in continuously cultivated soils in Puerto Rico.

2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Blake A. Brown ◽  
Robert M. Hayes ◽  
Donald D. Tyler ◽  
Thomas C. Mueller

Fluometuron adsorption and degradation were determined in soil collected at three depths from no-till + no cover, conventional-till + no cover, no-till + vetch cover, and conventional-till + vetch cover in continuous cotton. These combinations of tillage + cover crop + soil depth imparted a range of organic matter and pH to the soil. Soil organic matter and pH ranged from 0.9 to 2.5% and from 4.7 to 6.5, respectively. Fluometuron adsorption was affected by soil depth, tillage, and cover crop. In surface soils (0 to 4 cm), fluometuron adsorption was greater in no-till + vetch plots than in conventional-tilled + no cover plots. Soil adsorption of fluometuron was positively correlated with organic matter content and cation exchange capacity. Fluometuron degradation was not affected by adsorption, and degradation empirically fit a first-order model. Soil organic matter content had no apparent effect on fluometuron degradation rate. Fluometuron degradation was more rapid at soil pH > 6 than at pH ≤ 5, indicating a potential shift in microbial activity or population due to lower soil pH. Fluometuron half-life ranged from 49 to 90 d. These data indicate that tillage and cover crop may affect soil dissipation of fluometuron by altering soil physical and chemical properties that affect fluometuron degrading microorganisms or bioavailability.


Weed Science ◽  
1969 ◽  
Vol 17 (1) ◽  
pp. 27-31 ◽  
Author(s):  
C. I. Harris ◽  
E. A. Woolson ◽  
B. E. Hummer

Twelve locations in the United States and Puerto Rico were the sites for determining the loss of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) and 2,3,6-trichlorophenylacetic acid (fenac) from soil. The herbicides were contained in tubes (1.88 by 6 inches) placed at depths of 3, 9, and 15 inches in the field. The samples were placed horizontally to minimize losses due to vertical movement of water from the tubes. After at least 3 months in the soil, the samples were returned to Beltsville and analyzed. Average recoveries showed 61% more atrazine and 41% more fenac from the 15-inch depth than from the 3-inch depth. Five northern samples contained more than twice as much atrazine and fenac residue as four southern samples. A positive correlation existed between fenac retention and soil organic matter content. Increasing soil organic matter and depth of placement, and decreasing temperature, tended to make the herbicides more persistent. However, the data were quite variable and the variations were often unexplainable.


2020 ◽  
Vol 51 (Special) ◽  
Author(s):  
Khoshnaw & Esmail

This study was conducted to compare between two methods of soil organic matter determination for main soil orders in Kurdistan region/Iraq, for this purpose forty-five soil samples were taken then the organic matter was determined using chemical (Walkley-Black (wet) method and loss-on-ignition method (dry) combustion method. The results indicated the significant correlation (r = 0.88**) between the studied methods It means there is good adjustment to convert organic matter by loss-on-ignition method (dry) to Walkley-Black (wet) method organic matter by this linear equation (organic matter by loss-on-ignition =1.651* Walkley-Black method organic matter +2.1877) this equation can be used to convert organic matter by two methods for Mollisols(M), Vertisols(V) and Aridisols(A) in Hawler(H), Sulaimani(S) and Duhok(D) governorates, this equation is very important and economic to determine and convert dry method to wet method, the amount of organic matter for M, V, A was recorded the highest value (49.5, 24.8, 20 gkg-1) respectively for Mollisols, Vertisols, and Aridisols at Hawler (H), Sulaimani (S), and Duhok(D) respectively for (DM5, SV4, DA1) in Duhok Mollisols, Sulaimani Vertisols and Duhok Aridisol respectively for walk- black (wet) method, the highest value for dry method organic matter in Mollisols, Vertisols, Aridisols was recorded (97.6, 77.9, 50.3 g kg-1) for soil orders (MD3, VD4, AD4) respectively.


Author(s):  
E. A. Akpa ◽  
O. S. Bello ◽  
D. M. Olim

The aim of this research was to investigate the fertility status of soils under Bamboo (Bambusa vulgaris) in Akamkpa and Odukpani Local Government Areas of Cross River State. Composite soil samples were collected at the depth of 0-15 cm under Bamboo (Bambusa vulgaris) using soil auger from fourteen (14) locations. The soil samples were analysed for some physico-chemical properties using standard procedures. Results obtained showed that the soils were predominantly sandy loam in both Akamkpa and Odukpani with a significant difference in the soil pH which was very strongly acid (mean pH in water =5.0). Organic carbon was high (26.00–41.00 g/kg) in Akamkpa and Odukpani (24.00 – 41.00 g/kg). Total nitrogen was medium (2.4–4.9 g/kg) in Akamkpa and low to medium (0.19 – 0.33%) in Odukpani. Available phosphorus was generally low (1.8-2.9 mg/kg) and (1.88 – 6.63 mg/kg) in both areas. Exchangeable calcium was low to medium (3.6-7.4 cmol/kg) in Akamkpa and medium to high (5.6-14.8 cmol/kg) in Odukpani. Magnesium contents were low (0.8-6.7 cmol/kg) and high (0.4 – 12.4 cmol/kg) in both areas. While exchangeable potassium (0.08 – 0.13 cmol/kg) and (0.09 – 0.13 cmol/kg) with sodium contents (0.06 – 0.08 cmol/kg) and (0.06 – 0.10 cmol/kg) were low. Exchangeable acidity of hydrogen (0.1 – 3.7 cmol/kg) was high in Akamkpa and low to medium (0.08-2.32 cmol/kg) in Odukpani and that of Aluminum contents (0.3 – 4.0 cmol/kg) and (0.0 – 4.0 cmol/kg) were generally low. The cation exchange capacity (CEC) was low (4.5 – 11.4 cmol/kg) in Akamkpa and low to medium (7.2 – 24.01 cmol/kg) in Odukpani and those of Effective Cation Exchange Capacity (ECEC) was low to medium (9.2 – 15.9 cmol/kg) in Akamkpa but low and high (7.8 – 24.41 cmol/kg) in Odukpani. The Base Saturation was medium to high (37 – 96%) in Akamkpa and high (60.9 – 98.4%) in Odukpani. The studies revealed that soils under Bamboo had high organic matter content. This could be attributed to the bamboo leaf fall which enhances the increase of organic matter content.


Author(s):  
Biboss Maharjan ◽  
Anon Chaulagain ◽  
Parikrama Sapkota ◽  
Dhurva P. Gauchan ◽  
Janardan Lamichanne

 The aim of this study was to investigate the response of soil physical and chemical properties during the transition from conventional to organic farming system. Soil samples were collected from five different farms: “Hasera organic farm” under 10 years of organic farming, “Everything organic nursery” under 5 years of organic farming, “Grameen Krishi” under 3 years of transition from conventional to organic, “Gautamshree farm” under 1 years of transition from conventional to organic and “Kuntabeshi farm” under IPM practice as reference. Soil bulk density, moisture content, texture, NPK, CEC and soil organic matter was evaluated in soil samples collected at 0-15 cm. Soil organic matter (5.45%) was highest in Hasera farm, whereas lowest bulk density (1.02gcm-3) was also in Hasera farm. Lowest soil organic matter content was found in Gautamshree farm. Soils of all farms were under loam texture. Soil macronutrients were highest in Grameen Krishi farm. The overall pH value of all soil samples was slightly acidic to acidic.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 1, 2017, Page: 76-84


2016 ◽  
Vol 8 (2) ◽  
pp. 229-235
Author(s):  
A. F. M. Sanaullah ◽  
M. Akhtaruzzaman ◽  
M. A. Uddin

Soil samples were collected from M. R. Khan tea-estate area of Moulvibazar district, Bangladesh. Organic matter, active acidity, reserve acidity, cation exchange capacity, clay content and textural class of the collected soil samples for different topographic positions and depths were determined. The percentage of sand, silt and clay varied from 59.75 to 70.50, 12.50 to 20.00 and 14.50 to 22.75, respectively. Active acidity and reserve acidity of the soils varied from 4.13 to 5.82 and 3.46 to 4.84, respectively.  Organic matter content varied from 0.37% to 1.93%. Cation exchange capacity (CEC) varied from 11.42 to 24.86 cmolKg-1. Soils were acidic in nature with considerably high reserve acidity. The measured parameters of the soil samples were plotted and analyzed with reference to topography and depth. The parameters have been found to vary with sampling sites, depths and topography.


Sign in / Sign up

Export Citation Format

Share Document