scholarly journals DISSEMINATING AN AUTOMATED IRRIGATION SYSTEM USING SOLAR ENERGY IN PERSPECTIVE OF BANGLADESH

Bangladesh is mainly an agricultural country. Agriculture is the most important occupation for the most of the Bangladeshi families. This study is conducted to develop an automated irrigation mechanism which turns the pumping motor ON and OFF by detecting the moisture content of the earth using the soil moisture sensor without the intervention of human. This Smart irrigation system project is using an Arduino Uno micro-controller, Solar Panel, Battery, Boost module, Relay Module, Soil Moisture Sensor, DC Motor etc. Arduino Uno that is programmed to collect the input signal according to moisture content of the soil and its output is given to the op-amp that will operate the pump. The benefit of employing this technique is to decrease human interference and it is quite feasible and affordable.

Author(s):  
Bhavna Dhole ◽  
Pratiksha Patle ◽  
Onkar Patole ◽  
Suprriya Lohar

This paper addresses water scarcity and electricity crisis by designing and implementing smart irrigation system. This system presents the details of a solar-powered automated irrigation system that turns ON/OFF the motor to pass water through the pump required to soil depending on the soil moisture, hence this system minimize the wastage of water. Soil moisture sensor sense the humidity of soil which is transmitted to a remote station. This data will be analyzed and used to pass out water by water pump. This system conserves electricity and conserves water. It is the proposed solution for the now a days energy crisis for the Indian farmers. Cost-effective solar power can be the answer to our energy needs. Solar powered smart irrigation systems are the acknowledgement to the Indian farmer.This system does not work at night in areas without a grid.


2016 ◽  
Vol 8 (4) ◽  
pp. 1959-1965 ◽  
Author(s):  
Jitendra Kumar ◽  
Neelam Patel ◽  
T. B. S. Rajput

Soil moisture sensor is an instrument for quick measurements of soil moisture content in the crop root zone on real time basis. The main objective of this research was development and evaluation of an indigenous sensor for precise irrigation scheduling. The various parts of sensor developed were ceramic cup, acrylic pipe, level sensor, tee, reducer, gland, cork, and end cap. The designed system was successfully tested on okra crop and calibrated with frequency domain reflectometry (FDR) by three methods of irrigation, i.e. check basin, furrow and drip, respectively. The average depth of water depletion in modified tensiometer by these methods was 27 to 35 cm at 50% management allowable depletion (MAD) of field capacity. This depth was useful for the level sensor to be installed inside modified tensiometer for real time irrigation scheduling. The correlation coefficient (R2) between soil moisture content obtained from the developed sensor and FDR was 0.963. Sensor network was integrated with global system for mobile communication (GSM), short message service (SMS) and drip head work to develop an automated irrigation system. This would enable farmers to effectively monitor and control water application in the field by sending command through SMS and receiving pumping status through the mobile phone.


Author(s):  
Akhila Pogula

Irrigation is defined as artificial software of water to land or soil. Irrigation manner may be used for the cultivation of agricultural plants at some point of the span of insufficient rainfall and for keeping landscapes. an automatic irrigation machine does the operation of a machine without requiring manual involvement of folks. each irrigation gadget such as drip, sprinkler and surface get automated with the assist of digital home equipment and detectors such as computer, timers, sensors and different mechanical gadgets. the automatic irrigation gadget on sensing soil moisture assignment is supposed for the development of an irrigation machine that switches submersible pumps on or off with the aid of the use of relays to perform this action on sensing the moisture content material of the soil. the main benefit of the usage of this irrigation machine is to reduce human interference and ensure right irrigation. The targets of this paper have been to control the water motor mechanically with the help of soil moisture sensor. in the end ship the facts (operation of the motor) of the farm field to the cell message to the user. an automatic irrigation gadget for efficient water control has been proposed.


2020 ◽  
Vol 1 (1) ◽  
pp. 23-32
Author(s):  
Sampurna Dadi Riskiono ◽  
Roy Harry Syidiq Pamungkas ◽  
Yudha Arya

Development at this time is increasing, people expect a tool or technology that can help human work, so technology becomes a necessity for humans. This final task is made a device that can do the job of watering tomato plants automatically. This tool aims to replace the manual work becomes automatic. The benefit of this tool is that it can facilitate the work of humans in watering chili plants. This tool uses a soil moisture sensor which acts as a soil moisture detector and sends an order to Arduino Uno to turn on the relay driver so that the wiper motor can splash water according to the needs of the soil automatically. The making of this final project is done by designing, making and implementing system components which include Arduino uno as a controller, driver relay to blow on and off the wiper motor, LCD (Linquit Cristal Display) to display the percentage value of water content


2007 ◽  
Vol 47 (2) ◽  
pp. 215 ◽  
Author(s):  
S. M. Pathan ◽  
L. Barton ◽  
T. D. Colmer

This study evaluated water application rates, leaching and quality of couch grass (Cynodon dactylon cv. Wintergreen) under a soil moisture sensor-controlled irrigation system, compared with plots under conventional irrigation scheduling as recommended for domestic lawns in Perth, Western Australia by the State’s water supplier. The cumulative volume of water applied during summer to the field plots of turfgrass with the sensor-controlled system was 25% less than that applied to plots with conventional irrigation scheduling. During 154 days over summer and autumn, about 4% of the applied water drained from lysimeters in sensor-controlled plots, and about 16% drained from lysimeters in plots with conventional irrigation scheduling. Even though losses of mineral nitrogen via leaching were extremely small (representing only 1.1% of the total nitrogen applied to conventionally irrigated plots), losses were significantly lower in the sensor-controlled plots. Total clippings produced were 18% lower in sensor-controlled plots. Turfgrass colour in sensor-controlled plots was reduced during summer, but colour remained acceptable under both treatments. The soil moisture sensor-controlled irrigation system enabled automatic implementation of irrigation events to match turfgrass water requirements.


2018 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Ridarmin Ridarmin ◽  
Zulizha Pandu Pertiwi

<p>naman merupakan tumbuhan yang dibudidayakan agar dapat diambil manfaatnya. Budidaya tanaman sendiri pada dasarnya dapat menjadi peluang usaha yang menjanjikan. Mulai dari budidaya tanaman hias, sayur mayur dan lain sebagainya. Tetapi saat ini produksi tanaman hias masih banyak yang belum menghasilkan hasil yang maksimal, dikarenakan masyarakat masih menggunakan teknologi manual dalam sistem pertanian yang digunakan. Tujuan dilakukan penelitian ini adalah merancang sebuah alat penyiraman tanaman hias otomatis untuk mengatasi masalah dalam penyiraman tanaman hias yang masin dilakukan secara manual dan sebagai bahan pembelajaran. Prototype ini menggunakan Arduino Uno sebagai pengontrol utama, sensor kelembaban tanah<br />digunakan untuk membaca kadar kelembaban tanah dan digunakan sebagai saklar untuk menghidupkan pompa penyiram. Dengan adanya alat penyiram otomatis ini, sensor kelembaban tanah akan membaca kelembaban tanah apakah tanah dalam keadaan kering apa sudah dalam keadaan basah. Ketika tanah dalam keadaan kering alat penyiram akan menyiram sampai tanah menjadi basah dan ketika sudah basah mesin akan mati secara otomatis.</p><p><br /><strong>Kata kunci</strong> : prototype, penyiram tanaman Arduino UNO, Sensor kelembaban tanah, Tanaman Hias.</p>


Sign in / Sign up

Export Citation Format

Share Document