Vim stimulation as a predictor of response to deep brain stimulation in patients of severe tremor undergoing dual stimulation

Author(s):  
Krishe Menezes ◽  
Milind Deogaonkar ◽  
Vatsal Bajpai

Deep brain stimulation, targeting the ventral intermediate nucleus of the thalamus (Vim), has been shown to be an effective management tool for tremors refractory to other therapies. There is some variance in response to Vim stimulation for severe essential and rubral tremors. This study looked at dual stimulations (addition, in which the Vim is stimulated along with an additional nucleus or augmentation, in which a second lead is placed within the Vim itself) for these types of tremors. A total of eight patients, four with rubral and four with severe essential tremors, were treated with deep brain stimulation. The responses of the patients were characterized on a scale from excellent improvement to worsening of condition. Two of the four patients with rubral tremor had an excellent response to Vim stimulation. These patients showed additional benefits when the prelemniscal radiation (Raprl) was stimulated, in addition to the Vim. Three of the four patients with severe essential tremor reported either a good or excellent response to Vim stimulation. One of these patients had the Raprl stimulated in addition to the Vim while another had an augmentation of the Vim, with ventralis oralis posterior (Vop) stimulation. Both showed additional benefits with the addition or augmentation performed. We conclude that if a patient with severe medically refractory tremor (essential or rubral tremor) responds to Vim stimulation but is still disabled he will likely also have a response to dual stimulation with an additional lead in the Raprl or an augmentation with an additional lead in the Vop. Patients who did not initially respond to Vim stimulation did not respond to the placement of a second lead. We also conclude that for severe essential tremor, Raprl stimulation showed a better response than Vim stimulation.

2021 ◽  
Author(s):  
Maarten Bot ◽  
Anne-Fleur van Rootselaari ◽  
Vincent Odekerken ◽  
Joke Dijk ◽  
Rob M A de Bie ◽  
...  

Abstract BACKGROUND Dentato-rubro-thalamic tract (DRT) deep brain stimulation (DBS) suppresses tremor in essential tremor (ET) patients. However, DRT depiction through tractography can vary depending on the included brain regions. Moreover, it is unclear which section of the DRT is optimal for DBS. OBJECTIVE To evaluate deterministic DRT tractography and tremor control in DBS for ET. METHODS After DBS surgery, DRT tractography was conducted in 37 trajectories (20 ET patients). Per trajectory, 5 different DRT depictions with various regions of interest (ROI) were constructed. Comparison resulted in a DRT depiction with highest correspondence to intraoperative tremor control. This DRT depiction was subsequently used for evaluation of short-term postoperative adverse and beneficial effects. RESULTS Postoperative optimized DRT tractography employing the ROI motor cortex, posterior subthalamic area (PSA), and ipsilateral superior cerebellar peduncle and dentate nucleus best corresponded with intraoperative trajectories (92%) and active DBS contacts (93%) showing optimal tremor control. DRT tractography employing a red nucleus or ventral intermediate nucleus of the thalamus (VIM) ROI often resulted in a more medial course. Optimal stimulation was located in the section between VIM and PSA. CONCLUSION This optimized deterministic DRT tractography strongly correlates with optimal tremor control. This technique is readily implementable for prospective evaluation in DBS target planning for ET.


2020 ◽  
Vol 10 (12) ◽  
pp. 925
Author(s):  
Christian Iorio-Morin ◽  
Anton Fomenko ◽  
Suneil K. Kalia

Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed.


Neurology ◽  
2020 ◽  
Vol 94 (10) ◽  
pp. e1073-e1084 ◽  
Author(s):  
Takashi Tsuboi ◽  
Zakia Jabarkheel ◽  
Pamela R. Zeilman ◽  
Matthew J. Barabas ◽  
Kelly D. Foote ◽  
...  

ObjectiveTo assess longitudinal tremor outcomes with ventral intermediate nucleus deep brain stimulation (VIM DBS) in patients with dystonic tremor (DT) and to compare with DBS outcomes in essential tremor (ET).MethodsWe retrospectively investigated VIM DBS outcomes for 163 patients followed at our center diagnosed with either DT or ET. The Fahn-Tolosa-Marin tremor rating scale (TRS) was used to assess change in tremor and activities of daily living (ADL) at 6 months, 1 year, 2–3 years, 4–5 years, and ≥6 years after surgery.ResultsTwenty-six patients with DT and 97 patients with ET were analyzed. Compared to preoperative baseline, there were significant improvements in TRS motor up to 4–5 years (52.2%; p = 0.032) but this did not reach statistical significance at ≥6 years (46.0%, p = 0.063) in DT, which was comparable to the outcomes in ET. While the improvements in the upper extremity tremor, head tremor, and axial tremor were also comparable between DT and ET throughout the follow-up, the ADL improvements in DT were lost at 2–3 years follow-up.ConclusionOverall, tremor control with VIM DBS in DT and ET was comparable and remained sustained at long term likely related to intervention at the final common node in the pathologic tremor network. However, the long-term ADL improvements in DT were not sustained, possibly due to inadequate control of concomitant dystonia symptoms. These findings from a large cohort of DT indicate that VIM targeting is reasonable if the tremor is considerably more disabling than the dystonic features.Classification of evidenceThis study provides Class IV evidence that VIM DBS improves tremor in patients with DT or ET.


2019 ◽  
Author(s):  
Shane Lee ◽  
Wael F Asaad ◽  
Stephanie R Jones

AbstractEssential tremor (ET) is the most common movement disorder, in which the primary symptom is a prominent, involuntary 4–10 Hz movement. For severe, medication refractory cases, deep brain stimulation (DBS) targeting the ventral intermediate nucleus of the thalamus (VIM) can be an effective treatment for cessation of tremor and is thought to work in part by disrupting tremor frequency oscillations (TFOs) in VIM. However, DBS is not universally effective and may be further disrupting cerebellar-mediated activity in the VIM. Here, we applied biophysically detailed computational modeling to investigate whether the efficacy of DBS is affected by the mechanism of generation of TFOs or by the pattern of stimulation. We simulated the effects of DBS using standard, asymmetric pulses as well as biphasic, symmetric pulses to understand biophysical mechanisms of how DBS disrupts TFOs generated either extrinsically or intrinsically. The model results suggested that the efficacy of DBS in the VIM is affected by the mechanism of generation of TFOs. Symmetric biphasic DBS reduced TFOs more than standard DBS in both networks, and these effects were stronger in the intrinsic network. For intrinsic tremor frequency activity, symmetric biphasic DBS was more effective at reducing TFOs. Simulated non-tremor signals were also transmitted during symmetric biphasic DBS, suggesting that this type of DBS may help to reduce side effects caused by disruption of the cerebellothalamocortical pathway. Biophysical details in the model provided a mechanistic interpretation of the cellular and network dynamics contributing to these effects that can be empirically tested in future studies.Significance StatementEssential tremor (ET) is a common movement disorder, whose primary symptom is an involuntary rhythmic movement of the limbs or head. An area of the human tha-lamus demonstrates electrical activity that oscillates at the frequencies of tremor, and deep brain stimulation (DBS) in this area can reduce tremor. It is not fully understood how DBS affects tremor frequency activity in the thalamus, and studying different patterns of DBS stimulation may help to clarify these mechanisms. We created a computational model of different shapes of DBS and studied how they reduce different hypothesized generators of tremor frequency activity. A greater understanding of how DBS affects the thalamus may lead to improved treatments to reduce tremor and alleviate side effects in patients with ET.


2020 ◽  
Vol 131 (1) ◽  
pp. 167-176 ◽  
Author(s):  
B.J. Wilkes ◽  
A. Wagle Shukla ◽  
A. Casamento-Moran ◽  
C.W. Hess ◽  
E.A. Christou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document