scholarly journals Osteogenic differentiation potential and quantification of fresh and cryopreserved dental follicular stem cells-an in vitro analysis

2021 ◽  
Vol 17 (1) ◽  
2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

2009 ◽  
Vol 13 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Ulrich Reinhart Goessler ◽  
Peter Bugert ◽  
Karen Bieback ◽  
Jens Stern-Straeter ◽  
Gregor Bran ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 479-493
Author(s):  
Bruno Machado Bertassoli ◽  
Gerluza Aparecida Borges Silva ◽  
Juliano Douglas Albergaria ◽  
Erika Cristina Jorge

2013 ◽  
Vol 319 (18) ◽  
pp. 2856-2865 ◽  
Author(s):  
Achim Salamon ◽  
Anika Jonitz-Heincke ◽  
Stefanie Adam ◽  
Joachim Rychly ◽  
Brigitte Müller-Hilke ◽  
...  

2020 ◽  
Author(s):  
Lungang Shi ◽  
Yan Liang ◽  
Lijing Yang ◽  
Binchen Li ◽  
Binna Zhang ◽  
...  

AbstractBackgroundAll-trans retinoic acid (atRA) results in cleft palate, but the cellular and molecular mechanisms underlying the teratogenic effects on palatal development have not been fully elucidated. Autophagy interruption has been reported to seriously affect embryonic-cell differentiation and development. This study aimed to verify whether atRA-induced cleft palate occurs because atRA blocks autophagy and stemness of embryonic palatal mesenchyme (MEPM) cells, which are maintained via the phosphatase and tensin homolog (PTEN)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) autophagic signaling pathway, and inhibits osteogenic-differentiation potential of MEPM cells, which could lead to the development of cleft palate.MethodsTo assess the stemness and pluripotency of MEPM cells, we analyzed their surfacemarkers using immunofluorescence (IF) and flow cytometry (FCM). Differentiation potentials, such as osteogenic, adipogenic, and chondrogenic differentiation, were induced. We also investigated the role of the PTEN/Akt/mTOR autophagic signaling pathway, which maintains the stemness and pluripotency of MEPM cells. Using transmission electron microscopy (TEM), Western blot analysis, quantitative reverse transcriptase polymerase chain reaction (RT-qPCR), messenger ribonucleic acid (mRNA) microarray, dual-luciferase reporter system, and exosomes, we found that atRA blocks autophagy and osteogenic differentiation of MEPM cells through micro-ribonucleic acid (miR)-106a-5p by targeting the PTEN/Akt/mTOR autophagic pathway.ResultsIn vitro purified MEPM cells expressed cell surface markers similar to those of mouse bone marrow stem cells. Additionally, in vitro MEPM cells were ectomesenchymal and expressed the neural-crest marker human natural killer-1 (HNK-1), the mesodermal marker vimentin, and the ectodermal marker nestin. They were also positive for in vitro MEPM markers, including platelet-derived growth factor alpha (PDGFRα), ephrin B1 (Efnb1), odd-skipped related 2 (Osr2), and Meox2, as well as for stemness markers including POU class 5 homeobox 4 (Oct4), Nanog, and sex-determining region Y-related HMG box 2 (Sox2). MEPM cell pluripotency was retained through activation of the PTEN/Akt/mTOR autophagic signaling pathway. We found that atRA blocked MEPM cell pluripotency to inhibit osteogenic differentiation via miR-106a-5p targeting of PTEN mRNA and subsequent suppression of the PTEN/Akt/mTOR autophagic pathway.ConclusionsIn vitro cultured MEPM cells are ectomesenchymal stem cells that have strong osteogenic differentiation potential, and MEPM pluripotency is regulated by autophagy via the PTEN/AKT/mTOR signaling pathway. atRA disrupts MEPM cell pluripotency through PTEN/AKT/mTOR signaling inactivation where miR-106a-5p targets PTEN mRNA to reduce osteogenic differentiation of MEPM cells and results in the development of cleft palates. Our findings provide new insight into the mechanism underlying the development of cleft palate, and miR-106a-5p may act as a prenatal screening biomarker for cleft palate as well as a new diagnostic and therapeutic target.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Hee Kim ◽  
Kyung-Ah Cho ◽  
Hyun-Ji Lee ◽  
Minhwa Park ◽  
Han Su Kim ◽  
...  

The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.


2010 ◽  
Vol 31 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Feng Pan ◽  
Rui Zhang ◽  
Guang Wang ◽  
Yin Ding

The existence of PDLSCs [PDL (periodontal ligament) stem cells] in PDL has been identified and such cells may function in periodontal reconstruction, including bone formation. Oestrogens/ERs (oestrogen receptors; ERα and ERβ) exert important effects in bone formation, however, the relationship between ERs and PDLSCs has not been established. In the present study, PDLSCs were isolated and assays for detecting stem-cell biomarkers and multipotential differentiation potential confirmed the validity of human PDLSCs. The results of RT–PCR (reverse transcription–PCR) and Western blotting showed that ERα and ERβ were expressed at higher levels in PDLSCs as compared with PDLCs (PDL cells), and 17β-oestradiol obviously induced the osteogenic differentiation of PDLSCs in vitro. Furthermore, a pan-ER inhibitor or lentivirus-mediated siRNA (small interfering RNA) targeting ERα or ERβ blocked the oestrogen-induced osteogenic differentiation of PDLSCs. The results indicate that both ERα and ERβ were involved in the process of osteogenic differentiation of PDLSCs.


Sign in / Sign up

Export Citation Format

Share Document