scholarly journals Fast, Furious and Insecure: Passive Keyless Entry and Start Systems in Modern Supercars

Author(s):  
Lennert Wouters ◽  
Eduard Marin ◽  
Tomer Ashur ◽  
Benedikt Gierlichs ◽  
Bart Preneel

The security of immobiliser and Remote Keyless Entry systems has been extensively studied over many years. Passive Keyless Entry and Start systems, which are currently deployed in luxury vehicles, have not received much attention besides relay attacks. In this work we fully reverse engineer a Passive Keyless Entry and Start system and perform a thorough analysis of its security.Our research reveals several security weaknesses. Specifically, we document the use of an inadequate proprietary cipher using 40-bit keys, the lack of mutual authentication in the challenge-response protocol, no firmware readout protection features enabled and the absence of security partitioning.In order to validate our findings, we implement a full proof of concept attack allowing us to clone a Tesla Model S key fob in a matter of seconds with low cost commercial off the shelf equipment. Our findings most likely apply to other manufacturers of luxury vehicles including McLaren, Karma and Triumph motorcycles as they all use the same system developed by Pektron.

2021 ◽  
Vol 17 (3) ◽  
pp. 1-25
Author(s):  
Nico Mexis ◽  
Nikolaos Athanasios Anagnostopoulos ◽  
Shuai Chen ◽  
Jan Bambach ◽  
Tolga Arul ◽  
...  

In recent years, a new generation of the Internet of Things (IoT 2.0) is emerging, based on artificial intelligence, the blockchain technology, machine learning, and the constant consolidation of pre-existing systems and subsystems into larger systems. In this work, we construct and examine a proof-of-concept prototype of such a system of systems, which consists of heterogeneous commercial off-the-shelf components, and utilises diverse communication protocols. We recognise the inherent need for lightweight security in this context, and address it by employing a low-cost state-of-the-art security solution. Our solution is based on a novel hardware and software co-engineering paradigm, utilising well-known software-based cryptographic algorithms, in order to maximise the security potential of the hardware security primitive (a Physical Unclonable Function) that is used as a security anchor. The performance of the proposed security solution is evaluated, proving its suitability even for real-time applications. Additionally, the Dolev-Yao attacker model is considered in order to assess the resilience of our solution towards attacks against the confidentiality, integrity, and availability of the examined system of systems. In this way, it is confirmed that the proposed solution is able to address the emerging security challenges of the oncoming era of systems of systems.


Author(s):  
Tomas Fried ◽  
Antonio Di Buono ◽  
David Cheneler ◽  
Neil Cockbain ◽  
Jonathan M. Dodds ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 15161-15166
Author(s):  
Rodolfo Orjuela ◽  
Jean-Philippe Lauffenburger ◽  
Jonathan Ledy ◽  
Michel Basset ◽  
Joel Lambert ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
Roberto J. López-Sastre ◽  
Marcos Baptista-Ríos ◽  
Francisco Javier Acevedo-Rodríguez ◽  
Soraya Pacheco-da-Costa ◽  
Saturnino Maldonado-Bascón ◽  
...  

In this paper, we present a new low-cost robotic platform that has been explicitly developed to increase children with neurodevelopmental disorders’ involvement in the environment during everyday living activities. In order to support the children and youth with both the sequencing and learning of everyday living tasks, our robotic platform incorporates a sophisticated online action detection module that is capable of monitoring the acts performed by users. We explain all the technical details that allow many applications to be introduced to support individuals with functional diversity. We present this work as a proof of concept, which will enable an assessment of the impact that the developed technology may have on the collective of children and youth with neurodevelopmental disorders in the near future.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Joyoung Lee ◽  
Zijia Zhong ◽  
Bo Du ◽  
Slobodan Gutesa ◽  
Kitae Kim

This paper presents a low-cost and energy-saving urban mobility monitoring system based on wireless sensor networks (WSNs). The primary components of the proposed sensor unit are a Bluetooth sensor and a Zigbee transceiver. Within the WSN, the Bluetooth sensor captures the MAC addresses of Bluetooth units equipped in mobile devices and car navigation systems. The Zigbee transceiver transmits the collected MAC addresses to a data center without any major communications infrastructures (e.g., fiber optics and 3G/4G network). A total of seven prototype sensor units have been deployed on roadway segments in Newark, New Jersey, for a proof of concept (POC) test. The results of the POC test show that the performance of the proposed sensor unit appears promising, resulting in 2% of data drop rates and an improved Bluetooth capturing rate.


2019 ◽  
Vol 73 ◽  
pp. 167-179 ◽  
Author(s):  
Rafaela C. de Freitas ◽  
Rodrigo Alves ◽  
Abel G. da Silva Filho ◽  
Ricardo E. de Souza ◽  
Byron L.D. Bezerra ◽  
...  

2021 ◽  
Author(s):  
Jan Hrach

<p>We have undertaken a journey to develop a small X-band radar based on widely available commercial off-the-shelf (COTS) components. We have evaluated various radar transmitters, antenna and radome designs and sizes and we are currently operating the second-largest radar network in Europe, spanning 5 countries and consisting of 30 radars.</p><p>The final solution can be deployed by a small team in two days and operated without supervision with negligible maintenance and recurring costs. With approximately 120 kilometers of effective range and high refresh rate, it might be a good fit as an early warning radar, for areas with no current radar coverage or to fill gaps in larger networks; however, due to some limitations of the X band, namely higher attenuation in spatially distributed rain, it may not be a replacement of long-range observation radars.</p><p>In this work, we present an overview of our undertakings, technical solutions we have chosen and problems we have encountered. First, we cover transmitter technology selection, and discuss advantages and disadvantages of currently available magnetron and solid-state transmitters. Then we show the evolution of our antenna design, from 1-dimensional slotted waveguide to parabolic antennas with tapered beam. </p><p>With large parabolic antennas, another problem arises: the mechanics of the radar cannot cope with the additional weight and angular momentum, thus we had to develop various mechanical supports and a custom rotator. This rotator can also tilt the antenna, effectively adding volumetric scanning; the tilting is also needed to cope with non-ideal radar locations, where the horizon is partially obscured, which are unfortunately common for a radar network with limited budget. Finally, we discuss design and material selection of our custom radomes, and present an overall experience with everyday running and maintaining the network.</p>


2021 ◽  
Author(s):  
Benjamin Secker

Use of the Internet of Things (IoT) is poised to be the next big advancement in environmental monitoring. We present the high-level software side of a proof-of-concept that demonstrates an end-to-end environmental monitoring system,<br><div>replacing Greater Wellington Regional Council’s expensive data loggers with low-cost, IoT centric embedded devices, and it’s supporting cloud platform. The proof-of-concept includes a Micropython-based software stack running on an ESP32 microcontroller. The device software includes a built-in webserver that hosts a responsive Web App for configuration of the device. Telemetry data is sent over Vodafone’s NB-IoT network and stored in Azure IoT Central, where it can be visualised and exported.</div><br>While future development is required for a production-ready system, the proof-of-concept justifies the use of modern IoT technologies for environmental monitoring. The open source nature of the project means that the knowledge gained can be re-used and modified to suit the use-cases for other organisations.


Sign in / Sign up

Export Citation Format

Share Document