scholarly journals Studies on the anti obesity activity of ethanolic extract of Centella Asiatica in Triton-X, High fat diet and Progesterone induced obesity

2019 ◽  
Vol 9 (4) ◽  
pp. 118-132
Author(s):  
SK Asmath Begum ◽  
Kumar Swamy
2021 ◽  
Vol 5 (9) ◽  
pp. 70-80
Author(s):  
Mohd Ayyub ◽  
Mohammad Mukim ◽  
Mohsina F Patwekar ◽  
Faheem I Patwekar ◽  
Pratishtha Sharma ◽  
...  

Author(s):  
Farouk K El-baz ◽  
Hanan F Aly

 Objective: This study was carried out to investigate the potential of Dunaliella salina microalgae to ameliorate obesity induced by high-fat diet (HFD) in male Wistar rats.Methods: Fifty rats weighing 150–160 g were fed HFD for 12 weeks. The rats were randomly divided into five groups of ten rats each. Obese rats were orally administered D. salina ethanolic extract (150 mg/Kg body weight), and orlistat as standard drug (12 mg/Kg body weight), for 6 weeks.Results: Treatment of obese rats with both D. salina and orlistat had a significant effect in reducing body and liver weights as well as visceral fat, inhibiting pancreatic lipase activity, decreased lipid profile, and increased fecal fat and ameliorating liver function enzymes activity, insulin, blood glucose, and leptin levels. Besides, food intake was insignificantly increased as a result of D. salina and orlistat treatments compared with normal control rats.Conclusion: It could be concluded that D. salina rich in β-carotene significantly reduced body weight gain and ameliorated several metabolic pathways implicated in obesity and its related complication. Hence, further intensive study must be carried out to formulate D. Salina extracts to apply as a promising natural anti-obesity nutraceutical drug.


Author(s):  
Bheemshetty S. Patil ◽  
Pallavi S. Kanthe ◽  
Chandramouli R. Reddy ◽  
Kusal K. Das

Background: Dietary high fat possibly causes oxidative stress. Also, it alters the pathophysiology of metabolically active myocardial tissues and vascular architecture. Emblica officinalis contains a potential antioxidant that counteracts oxidative stress and possibly maintains vascular integrity. Objective: To assess the effect of ethanolic extract of Emblica officinalis (EEO) on High Fat Diet (HFD) induced changes in vascular chemistry and histopathology of the cardiovascular system in male albino rats. Materials and Methods: Ethanolic extract of Emblica Officinalis (EEO) was prepared and phytochemical analysis was done. Rats were divided into four groups, having six rats in each group as follows: group 1- Control (20% fat); group 2 (20% fat+ EEO 100 mg/kg/b w); group 3 (30% fat) and group 4 (30% fat + EEO 100 mg/kg/b w). Dietary and EEO supplementation was continued for 21 days. Gravimetric and oxidative stress markers like MDA, NO, antioxidants like Vitamin C and E, and molecular marker (NOS3) were evaluated. Histopathological analysis was done on the myocardium and elastic artery along with measurement of coronary arterial wall thickness and lumen diameter. One way ANOVA was done for analysis of data. Results: High fat diet showed a significant increase in MDA, decrease of NO with unaltered NOS3 protein in rats fed with high fat diet, which indicate possible alteration of vascular pathophysiology. Supplementation of EEO showed an ameliorating effect on high fat diet induced oxidative stress. These results were further corroborated with findings of a histopathological study on the myocardium, elastic artery and coronary arterial architecture. Conclusion: Ethanolic extract of Emblica officinalis (EEO) indicates its cardioprotective efficacy against rats fed with high fat diet.


Sign in / Sign up

Export Citation Format

Share Document