scholarly journals Manufacture of Portland Cement from Claystone of Nfayil Formation Middle Miocene, in Southern Desert of Iraq

2021 ◽  
Vol 54 (2F) ◽  
pp. 131-144
Author(s):  
Saif Rmaidh ◽  
Salih Awadh

The research aims to assess the claystone exposed in the Nfayil Formation (Middle Miocene) for Portland cement (P.C.) manufacturing based on mineralogy and geochemistry. The importance of the study is to avoid the miming of the agricultural soils that are mining now for the cement industry. Claystones of Nfayil Formation and the limestone of the Euphrates Formation were used to design the raw mixture as clay to limestone (1:3). The chemical composition (%) of the designed mixture was calculated using the Alligation Alternative Method (A.A.M.) as CaO (65.52), MgO (1.05), SiO2 (21.65), Al2O3 (7.43), Fe2O3 (2.62), Na2O3+K2O (1.52) and SO3 (0.26), which are suitable for P.C. The lime saturation factor (LSF = 92.8), silica saturation factor (SSF = 0.87), alumina ratio (AR = 2.8), silica ratio (SR = 2.16), and calcium to silica (CS = 3.04) of the planned mixture are all within the permissible range. A clinker was successfully manufactured as composed mainly of belite, alite, aluminate, and ferrite.

1898 ◽  
Vol 46 (1192supp) ◽  
pp. 19108-19109
Author(s):  
Bernard L. Green

2021 ◽  
Vol 19 (4) ◽  
pp. 315-328
Author(s):  
N.M. Khalil ◽  
Yousif Algamal

This work aims at maximum exploitation of petroleum waste sludge as additive to portland cement to prepare blended cements and hence increasing its production capacity without further firing. This will decrease the main cement industry problems involving environmental pollution such as releasing gases and high-energy consumption during industry and hence maximizes the production economics. Six batches of ordinary portland cement (OPC) mixed with different proportions of petroleum waste sludge (PWS) donated as C1 (control batch contains no PWS), C2 (contains 90 wt.% of OPC+10 wt.% of PWS), C3 (contains 80 wt.% of OPC+20 wt.% of PWS), C4 (contains 70 wt.% of OPC+30 wt.% of PWS), C4 (contains 60 wt.% of OPC+40 wt.% of PWS) and C6 (contains 50 wt.% of OPC+50 wt.% of PWS), were prepared and mixed individually with the suitable amount of mixing water. Cement mixes C2, C3 and C4 showed improved cementing and physicomechanical properties compared with pure cement (C1) with special concern of mix C4. Such improvement is due to the relatively higher surface area as well as the high content of kaolinite and quartz in the added PWS (high pozzalanity) favoring the hydration process evidenced by the increase in the cement hydration product (portlandite mineral (Ca (OH) 2).


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1302
Author(s):  
Andrés Játiva ◽  
Evelyn Ruales ◽  
Miren Etxeberria

The construction industry is affected by the constant growth in the populations of urban areas. The demand for cement production has an increasing environmental impact, and there are urgent demands for alternative sustainable solutions. Volcanic ash (VA) is an abundant low-cost material that, because of its chemical composition and amorphous atomic structure, has been considered as a suitable material to replace Portland cement clinker for use as a binder in cement production. In the last decade, there has been interest in using alkali-activated VA material as an alternative material to replace ordinary Portland cement. In this way, a valuable product may be derived from a currently under-utilized material. Additionally, alkali-activated VA-based materials may be suitable for building applications because of their good densification behaviour, mechanical properties and low porosity. This article describes the most relevant findings from researchers around the world on the role of the chemical composition and mineral contents of VA on reactivity during the alkali-activation reaction; the effect of synthesis factors, which include the concentration of the alkaline activator, the solution-to-binder ratio and the curing conditions, on the properties of alkali-activated VA-based materials; and the mechanical performance and durability properties of these materials.


2021 ◽  
Vol 72 ◽  
pp. 215-222
Author(s):  
Mohanad R.A. Al-Owaidi ◽  
◽  
Mohammed L. Hussein ◽  
Ruaa Issa Muslim ◽  
◽  
...  

The Portland cement industry is one of the strategic industries in any country. The basis of an industry success is the availability of raw materials and, the low extraction in addition to transportation costs. The Bahr Al-Najaf region is abundant with limestone rocks but lacks primary gypsum. An investigation had been carried out to identify the source of secondary gypsum as an alternative to primary gypsum. Twelve boreholes were drilled for a depth of 2 m, as the thickness of suitable secondary gypsum layer ranges from 1 to 1.5 m. The mineralogical study revealed the predominance of gypsum followed by quartz and calcite, with an average of 62.9%, 19.6% and 14.35%, respectively. The geochemical analysis revealed that the content of SO3 is appropriate and ranging from 41.92% to 32.89% with an average of 37.73%. The SO3 content is within an acceptable range. The mean abundance of the major oxides of the study area may be arranged as SO3 > CaO> SiO2> MgO> Al2O> Fe2O3. The insoluble residue was at an acceptable rate. The laboratory experiments for milling secondary gypsum with clinker has successfully proven the production of Portland cement that matches the limits of the Iraqi Quality Standard (IQS) No. 5 of 1984. Great care must be taken when using secondary gypsum; secondary gypsum must be mixed well to maintain the chemical properties before blending with clinker and utilizing in the cement mill in the cement plant.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2903 ◽  
Author(s):  
Sung-Hoon Kang ◽  
Yang-Hee Kwon ◽  
Juhyuk Moon

In the cement industry, utilization of a sustainable binder that has a lower energy consumption and carbon dioxide (CO2) emission than Portland cement is becoming increasingly important. Air lime is a binder that hardens by absorbing CO2 from the atmosphere, and its raw material, hydrated lime, is manufactured at a lower temperature (around 900 °C) than cement (around 1450 °C). In this study, the amount and rate of CO2 uptake by air lime-based materials are quantitatively evaluated under ambient curing conditions of 20 °C, 60% relative humidity, and 0.04% CO2 concentration. In addition, the effects of the water-to-binder ratio (w/b) and silica fume addition on the material properties of the air lime mortar, such as strength, weight change, carbonation depth, and pore structure, are investigated. Unlike hydraulic materials, such as Portland cement, the air lime mortar did not set and harden under a sealed curing condition, however, once exposed to dry air, the mortar began to harden by absorbing CO2. During the first week, most of the internal water evaporated, thus, the mortar weight was greatly reduced. After that, however, both the weight and the compressive strength consistently increased for at least 180 days due to the carbonation reaction. Based on the 91-day properties, replacing 10% of hydrated lime with silica fume improved the compressive and flexural strengths by 27% and 13% respectively, whereas increasing the w/b from 0.4 to 0.6 decreased both strengths by 29% due to the increased volume of the capillary pores. The addition of silica fume and the change in the w/b had no significant impact on the amount of CO2 uptake, but these two factors were effective in accelerating the CO2 uptake rate before 28 days. Lastly, the air lime-based material was evaluated to be capable of recovering half of the emitted CO2 during the manufacture of hydrated lime within 3 months.


Author(s):  
Allen Bradley ◽  
Bobby Chen ◽  
Kevin Jackson ◽  
Randall Moore ◽  
Steve Baloga

Sign in / Sign up

Export Citation Format

Share Document