scholarly journals Connections

2020 ◽  
Vol 2 (3(September-December)) ◽  
pp. e642020
Author(s):  
Ricardo Santos De Oliveira

The human brain contains around 86 billion nerve cells and about as many glial cells [1]. In addition, there are about 100 trillion connections between the nerve cells alone. While mapping all the connections of a human brain remains out of reach, scientists have started to address the problem on a smaller scale. The term artificial neural networks (ANNs or simply neural networks (NNs), encompassing a family of nonlinear computational methods that, at least in the early stage of their development, were inspired by the functioning of the human brain. Indeed, the first ANNs were nothing more than integrated circuits devised to reproduce and understand the transmission of nerve stimuli and signals in the human central nervous system [2]. The correct way of doing it is to the first study human behavior. The human brain has a biological neural network that has billions of interconnections. As the brain learns, these connections are either formed, changed or removed, similar to how an artificial neural network adjusts its weights to account for a new training example. This complexity is the reason why it is said that practice makes one perfect since a greater number of learning instances allow the biological neural network to become better at whatever it is doing. Depending upon the stimulus, only a certain subset of neurons are activated in the nervous system. Recently, Moreau et al., [3] published an interesting paper studying how artificial intelligence can help doctors and patients with meningiomas make better treatment decisions, according to a new study. They demonstrated that their models were capable of predicting meaningful individual-specific clinical outcome variables and show good generalizability across the Surveillance, Epidemiology, and End Results (SEER) database to predict meningioma malignancy and survival after specific treatments. Statistical learning models were trained and validated on 62,844 patients from the SEER database and a model scoring for the malignancy model was performed using a series of metrics. A free smartphone and web application were also provided for readers to access and test the predictive models (www.meningioma.app). The use of artificial intelligence techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain (4). Specifically, recently, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms. The researchers' efforts are creating increasingly sophisticated and interpretable algorithms, which could favor a more intensive use of “intelligent” technologies in practical clinical contexts. Brain and machine working together will improve the power of these methods to make individual-patient predictions could lead to improved diagnosis, patient counseling, and outcomes.

The Artificial Intelligence is growing and covering various aspects of our daily life. The idea seems to be very complex. It seems that a program cannot be developed using our home PC. But believe me, it's not that difficult. Let us try to understand what the neural networks are and how they can be applied in trading. Artificial Neural Networks can be used in forex Currency Trading, for finding or predicting the next possible movements. We know that Artificial Neural Networks involves study of neurons in the human brain, sometimes called as biological network.ANN is based on connections of nodes, units called as artificial nodes or neurons. Neural network is an entity consisting of artificial neurons, among which there is an organized relationship. These relations are similar to a biological brain.


2013 ◽  
Vol 7 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Vijaykumar Sutariya ◽  
Anastasia Groshev ◽  
Prabodh Sadana ◽  
Deepak Bhatia ◽  
Yashwant Pathak

Artificial neural networks (ANNs) technology models the pattern recognition capabilities of the neural networks of the brain. Similarly to a single neuron in the brain, artificial neuron unit receives inputs from many external sources, processes them, and makes decisions. Interestingly, ANN simulates the biological nervous system and draws on analogues of adaptive biological neurons. ANNs do not require rigidly structured experimental designs and can map functions using historical or incomplete data, which makes them a powerful tool for simulation of various non-linear systems.ANNs have many applications in various fields, including engineering, psychology, medicinal chemistry and pharmaceutical research. Because of their capacity for making predictions, pattern recognition, and modeling, ANNs have been very useful in many aspects of pharmaceutical research including modeling of the brain neural network, analytical data analysis, drug modeling, protein structure and function, dosage optimization and manufacturing, pharmacokinetics and pharmacodynamics modeling, and in vitro in vivo correlations. This review discusses the applications of ANNs in drug delivery and pharmacological research.


Author(s):  
Thomas P. Trappenberg

This chapter discusses the basic operation of an artificial neural network which is the major paradigm of deep learning. The name derives from an analogy to a biological brain. The discussion begins by outlining the basic operations of neurons in the brain and how these operations are abstracted by simple neuron models. It then builds networks of artificial neurons that constitute much of the recent success of AI. The focus of this chapter is on using such techniques, with subsequent consideration of their theoretical embedding.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sergio Ledesma ◽  
Mario-Alberto Ibarra-Manzano ◽  
Dora-Luz Almanza-Ojeda ◽  
Pascal Fallavollita ◽  
Jason Steffener

In this study, Artificial Intelligence was used to analyze a dataset containing the cortical thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31 regions in the left hemisphere of the brain as well as from 31 regions in the right hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the number of neurons in the hidden layer. These neural networks were used to create a model for the cortical thickness through age for each region in the brain. Using the artificial neural networks and kernels with seven points, numerical differentiation was used to compute the derivative of the cortical thickness with respect to age. The derivative was computed to estimate the cortical thickness speed. Finally, color bands were created for each region in the brain to identify a positive derivative, that is, a part of life with an increase in cortical thickness. Likewise, the color bands were used to identify a negative derivative, that is, a lifetime period with a cortical thickness reduction. Regions of the brain with similar derivatives were organized and displayed in clusters. Computer simulations showed that some regions exhibit abrupt changes in cortical thickness at specific periods of life. The simulations also illustrated that some regions in the left hemisphere do not follow the pattern of the same region in the right hemisphere. Finally, it was concluded that each region in the brain must be dynamically modeled. One advantage of using artificial neural networks is that they can learn and model non-linear and complex relationships. Also, artificial neural networks are immune to noise in the samples and can handle unseen data. That is, the models based on artificial neural networks can predict the behavior of samples that were not used for training. Furthermore, several studies have shown that artificial neural networks are capable of deriving information from imprecise data. Because of these advantages, the results obtained in this study by the artificial neural networks provide valuable information to analyze and model the cortical thickness.


2020 ◽  
Author(s):  
Gang Liu

In recent years, artificial neural networks (ANNs) have won numerous contests in pattern recognition, machine learning, and artificial intelligence. The basic unit of an ANN is to mimic neurons in the brain. Neuron in ANNs is expressed as f(wx+b) or f(wx).This structure does not consider the information processing capabilities of dendrites. However, recently, studies shown that dendrites participate in pre-calculation in the brain. Concretely, biological dendrites play a role in the pre-processing to the interaction information of input data. Therefore, it's time to perfect the neuron of the neural network. This paper, add dendrite processing section, presents a novel artificial neuron, according to our previous studies (CR-PNN or Gang transform). The dendrite processing section can be expressed as WA.X. Because I perfected the basic unit of ANNs-neuron, there are so many networks to try, this article gives the basic architecture for reference in future research.


Author(s):  
Vicky Adriani ◽  
Irfan Sudahri Damanik ◽  
Jaya Tata Hardinata

The author has conducted research at the Simalungun District Prosecutor's Office and found the problem of prison rooms that did not match the number of prisoners which caused a lack of security and a lack of detention facilities and risked inmates to flee. Artificial Neural Network which is one of the artificial representations of the human brain that always tries to simulate the learning process of the human brain. The application uses the Backpropagation algorithm where the data entered is the number of prisoners. Then Artificial Neural Networks are formed by determining the number of units per layer. Once formed, training is carried out from the data that has been grouped. Experiments are carried out with a network architecture consisting of input units, hidden units, and output units. Testing using Matlab software. For now, the number of prisoners continues to increase. Predictions with the best accuracy use the 12-3-1 architecture with an accuracy rate of 75% and the lowest level of accuracy using 12-4-1 architecture with an accuracy rate of 25%.


In this paper, we propose a method to utilize machine learning to automate the system of classifying and transporting large quantities of logistics. First, establish an environment similar to the task of transferring logistics to the desired destination, and set up basic rules for classification and transfer. Next, each of the logistics that need sorting and transportation is defined as one entity, and artificial intelligence is introduced so that each individual can go to an optimal route without collision between the objects to the destination. Artificial intelligence technology uses artificial neural networks and uses genetic algorithms to learn neural networks. The artificial neural network is generated by each chromosome, and it is evolved based on the most suitable artificial neural network, and a score is given to each operation to evaluate the fitness of the neural network. In conclusion, the validity of this algorithm is evaluated through the simulation of the implemented system.


2021 ◽  
Author(s):  
Bhanu Srivastav

Neural networks are one of the methods of artificial intelligence. It is founded on an existingknowledge and capacity to learn by illustration of the biological nervous system. Neuralnetworks are used to solve problems that could not be modeled with conventional techniques.A neural structure can be learned, adapted, predicted, and graded. The potential of neuralnetwork parameters is very strong prediction. The findings are more reliable than standardmathematical estimation models. Therefore, it has been used in different fields.This research reviews the most recent advancement in utilizing the Artificial neural networks.The reviewed studies have been extracted from Web of Science maintained by ClarivateAnalytics in 2021. We find that among the other applications of ANN, the applications onCovid-19 are on the rise.


Author(s):  
Monika ◽  
Monika Ingole ◽  
Khemutai Tighare

In this paper, an enterprise is made to perceive manually written characters for English letters so as. The precept point of this mission is to plan a master framework for, "HCR(English) utilizing neural community". That could viably understand a particular individual-of-kind layout making use of the artificial neural community approach. The manually written man or woman acknowledgment trouble has grown to be the maximum famous trouble in ai. Handwritten man or woman acknowledgment has been a difficult space of exam, with the execution of gadgets getting to know we suggest a neural network-based methodology. The development is based totally on neural network, that is a subject of look at in artificial intelligence. Distinct strategies and methods are used to broaden a handwriting person recognition system. Acknowledgment, precision fee, execution, and execution time are massive versions on the way to be met through the technique being applied. The purpose is to illustrate the effectiveness of neural networks for handwriting character recognition.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 402
Author(s):  
Y Yusmartato ◽  
Zulkarnain Lubis ◽  
Solly Arza ◽  
Zulfadli Pelawi ◽  
A Armansah ◽  
...  

Lockers are one of the facilities that people use to store stuff. Artificial neural networks are computational systems where architecture and operations are inspired by the knowledge of biological neurons in the brain, which is one of the artificial representations of the human brain that always tries to stimulate the learning process of the human brain. One of the utilization of artificial neural network is for pattern recognition. The face of a person must be different but sometimes has a shape similar to the face of others, because the facial pattern is a good pattern to try to be recognized by using artificial neural networks. Pattern recognition on artificial neural network can be done by back propagation method. Back propagation method consists of input layer, hidden layer and output layer.  


Sign in / Sign up

Export Citation Format

Share Document