Side-Frame Dual-Band MIMO Antennas for 5G Smartphone Applications

2021 ◽  
Vol 35 (11) ◽  
pp. 1314-1315
Author(s):  
Guobo Wei ◽  
Quanyuan Feng

A side-frame dual-band multi-input multi-output (MIMO) antenna system for fifth-generation (5G) mobile communication in smartphone applications is presented, operating in 3.5 GHz band (3400-3600 MHz) and 5 GHz band (4800-5000 MHz). The proposed four-element antenna array is placed at four corners of the circuit board and printed on the side edge frame. The height of the structure is only 4.1 mm, which is compatible for ultra-thin full screen smartphones. According to the verification of HFSS and CST, ideal impedance matching bandwidths (superior to 10dB) and excellent isolations (superior to 18 dB) are obtained over the 3.5 GHz band and 5 GHz band, with peak gain of 6.18 dB and 4.9 dB, respectively.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542 ◽  
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Jing Cai ◽  
Han Li ◽  
Gui Liu

A quad-port antenna array operating in 3.5 GHz band (3.4–3.6 GHz) and 5 GHz band (4.8–5 GHz) for fifth-generation (5G) smartphone applications is presented in this paper. The single antenna element consists of an L-shaped strip, a parasitic rectangle strip, and a modified Z-shaped strip. To reserve space for 2G/3G/4G antennas, the quad-port antenna array is printed along the two long frames of the smartphone. The evolution design and the analysis of the optimal parameters of a single antenna element are derived to investigate the principle of the antenna. The prototype of the presented antenna is tested and the measured results agree well with the simulation. The measured total efficiency is better than 70% and the isolation is larger than 16.5 dB.


Author(s):  
D. Rajesh Kumar ◽  
G. Venkat Babu ◽  
K.G. Sujanth Narayan ◽  
N. Raju

Abstract A dual-band 10-port multiple input multiple output (MIMO) antenna array for 5G smartphone is proposed. Each antenna in the MIMO system can work from 3.4 to 3.6 GHz and 5 to 6 GHz with 10 dB (2:1 VSWR) impedance bandwidth. Nevertheless, for a 3:1 VSWR, the antenna operates from 3.3 to 3.8 GHz and 4.67 to 6.24 GHz. The MIMO system is formed by making 10 seven-shaped coupled fed slot antenna elements excited at two different resonant modes and integrated into the system circuit board. By implementing the spatial and polarization diversity techniques, high isolation better than 28 dB between any pair of antenna elements is achieved. The proposed 10-port MIMO antenna array is fabricated and measured. Significant radiation efficiency is obtained, ranging from 65 to 82% for both bands. The antenna gain in the required operating band is substantial, around 3–3.8 dBi. Further, the MIMO parameters such as envelope correlation co-efficient, channel capacity, and total active reflection co-efficient are calculated. The antenna's robustness is estimated by analyzing the user hand effects and specific absorption rate (SAR). The measured results are well agreed with the simulated results.


Author(s):  
Debani Prasad Mishra ◽  
Kshirod Kumar Rout ◽  
Surender Reddy Salkuti

This paper presents the design of a multiple-input and multiple-output (MIMO) antenna for a fifth-generation (5G) smartphone that will work in dual-band. The antenna proposed in this work operates at 2 frequency ranges, i.e., (3300-3600) MHz and (4800-5000) MHz. The antenna design consists of four antennas that are placed perpendicular to the edge of the system and this makes it different from the traditional 5G antennas. The area of each antenna on the side frames is (3.9×17 mm), and hence can be used in ultra-thin smartphones for 5G applications. The reflection coefficient obtained in the simulations is less than -6 dB for the required band, which suggests that the required impedance matching is obtained. The antenna proposed is designed by using central time zone (CST) microwave studio.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 348 ◽  
Author(s):  
Ziqiang Xu ◽  
Chenguang Ding ◽  
Qiangqiang Zhou ◽  
Yangtao Sun ◽  
Si Huang

A dual-antenna system operating at WIFI and GPS bands is proposed for common-metal rimmed smartphones applications. This dual-antenna system, which is horizontally placed on a ground plane of 4.5 × 75 mm2, consists of two folded inverted-F antennas (IFAs) sharing the same metal rim. Each IFA contains part of the metal radiating arm, and both IFAs own approximately one-quarter free space wavelengths at 2.44 GHz. A matching network is embedded in the feeding line of the left IFA to provide a resonant frequency at 1.575 GHz. By adjusting the positions of the shorting branch and feeding line, good impedance matching is obtained. Two gaps in the metal frame and a center shorting branch between two IFAs are adopted to improve the isolation. The isolations of better than 22 dB and 19 dB in GPS and WIFI bands are attained, respectively. The proposed antenna is fabricated, and the measured results regarding S-parameters, radiation efficiency, gain, as well as diversity performances are presented.


2014 ◽  
Vol 57 (2) ◽  
pp. 360-364 ◽  
Author(s):  
Muhammad Umar Khan ◽  
Mohammad S. Sharawi

Sign in / Sign up

Export Citation Format

Share Document