scholarly journals Numerical Simulation of Ventilated Cavitation Evolution with an Insight on How Ventilation Influences Pressure Fluctuation and Cavitation Noise

2020 ◽  
Vol 13 (06) ◽  
2021 ◽  
Vol 2097 (1) ◽  
pp. 012028
Author(s):  
Mingming Liu ◽  
Haifei Zhuang ◽  
Lei Cao

Abstract In order to reveal the dredge pump flow instability characteristics, the cavitation and pressure fluctuation in experimental study are carried out, the pressure fluctuation frequency domain and time domain characteristics of three different position inside the volute are analyzed. The results showed that, before cavitation, the main frequency at different positions at different flow rates is 1 times the main frequency of the blade. The fluctuation amplitude near the volute tongue and diffusion section is slightly larger than that at other positions. Before cavitation, the fluctuation amplitude at the same position off design flow is slightly higher than that near the design flow. Cavitation has little influence on the main frequency of the pressure fluctuation. After cavitation, the pressure fluctuation amplitude in the low flow point and the position of the volute tongue under each condition has little change, but cavitation aggravates the pressure fluctuation in the other conditions. Besides, the comparison between simulation and experiment results shows the dredge pump performance curve is in good agreement with the simulation curve, and the simulation results of pressure amplitude at different positions are basically consistent with the experiment results, which verifies the reliability of the numerical simulation method.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 949 ◽  
Author(s):  
Yan Jin ◽  
Xiaoke He ◽  
Ye Zhang ◽  
Shanshan Zhou ◽  
Hongcheng Chen ◽  
...  

This paper presents an investigation of external flow characteristics and pressure fluctuation of a submersible tubular pumping system by using a combination of numerical simulation and experimental methods. The steady numerical simulation is used to predicted the hydraulic performance of the pumping system, and the unsteady calculation is adopted to simulate the pressure fluctuation in different components of a submersible tubular pumping system. A test bench for a model test and pressure pulsation measurement is built to validate the numerical simulation. The results show that the performance curves of the calculation and experiment are in agreement with each other, especially in the high efficiency area, and the deviation is minor under small discharge and large discharge conditions. The pressure pulsation distributions of different flow components, such as the impeller outlet, middle of the guide vane, and guide vane outlet and bulb unit, are basically the same as the measurement data. For the monitoring points on the impeller and the wall of the guide vane especially, the main frequency and its amplitude matching degree are higher, while the pressure pulsation values on the wall of the bulb unit are quite different. The blade passing frequency and its multiples are important parameters for analysis of pressure pulsation; the strongest pressure fluctuation intensity appears in the impeller outlet, which is mainly caused by the rotor–stator interaction. The farther the measuring point from the impeller, the less the pressure pulsation is affected by the blade frequency. The frequency amplitudes decrease from the impeller exit to the bulb unit.


Author(s):  
Shigeru Takaya ◽  
Tatsuya Fujisaki ◽  
Masaaki Tanaka

Japan Atomic Energy Agency is now conducting design study and R&D of an advanced loop-type sodium cooled fast reactor. The cooling system is planned to be simplified by employing a two-loop configuration and shortened piping with less elbows than a prototype fast reactor in Japan, Monju, in order to reduce construction costs and enhance economic performance. The design, however, increases flow velocity in the hot-leg piping and induces large flow turbulence around elbows. Therefore, flow-induced vibration (FIV) of a hot-leg piping is one of main concerns in the design. Numerical simulation is a useful method to deal with such a complex phenomenon. We have been developing numerical analysis models of the hot-leg piping using Unsteady Reynolds Averaged Navier-Stokes simulation with Reynolds stress model. In this study, numerical simulation of a 1/3 scaled-model of the hot-leg piping was conducted. The results such as velocity profiles and power spectral densities (PSD) of pressure fluctuations were compared with experiment ones. The simulated PSD of pressure fluctuation at the recirculation region agreed well with the experiment, but it was found some underestimation at other parts, especially in relatively high frequency range. Eigenvalue vibration analysis was also conducted using a finite element method. Then, stress induced by FIV was evaluated using pressure fluctuation data calculated by URANS simulation. The calculated stress generally agrees well the measurement values, which indicates the importance of precise evaluation of the PSD of pressure fluctuation at the recirculation region for evaluation of FIV of the hot-leg piping with a short elbow.


Author(s):  
Weizhong Zhang ◽  
Hiroyuki Yoshida ◽  
Kazuyuki Takase

An approximate model is presented which permits the prediction in detail of the unsteady differential pressure fluctuation behavior between subchannels in the nuclear reactor core. The instantaneous fluctuation of differential pressure between two subchannels in gas-liquid slug flow regime is deemed as a result of the intermittent nature slug flow in each subchannel. The model is based on the detailed numerical simulation result of two-phase flow that pressure drop occurs mainly in liquid slug region and in the bubble region it is negligibly small. The instantaneous fluctuation of differential pressure between the two subchannels is associated with pressure gradient in the liquid slug for each channel. In addition to a hydrostatic gradient, acceleration and frictional gradients are taken into account to predict pressure gradient in the liquid slug. This model temporarily used in conjunction with the numerical simulation code works satisfactorily to reproduce numerical simulation results for instantaneous fluctuation of differential pressure between two modeled subchannels.


2014 ◽  
Vol 598 ◽  
pp. 206-209
Author(s):  
Xiao Hua Wang ◽  
Zhe Xiao ◽  
Kai Zhang

In this paper, SimpleC algorithm and Realizable turbulence model are applied to simulate the detailed flow field of oscillator, which is the key component of the vertical drainage jet flowmeter. Based on analyzing the pressure fluctuation of fluid in the feedback channels of the oscillator at different flowrates, the results indicate that there is an obviously linear relationship between velocity and oscillation frequency of static pressure in the vertical feedback channels within a certain range of flowrate. The achievements can be helpful to the optimization the design of vertical drainage jet flowmeter.


Author(s):  
Hou-lin Liu ◽  
Ming-zhen Lu ◽  
Bin-bin Lu ◽  
Ming-gao Tan ◽  
Yong Wang ◽  
...  

Adopting the Reynolds averaged Navier-Stokes equation and RNG k-ε turbulent model, the unsteady flow in the double channel pump is simulated with sliding mesh technique. Detecting points in the impeller and volute passages are to capture the pressure fluctuation law at different time. The pressure fluctuation around the outlet of the volute is measured by pressure transducer, then the frequency domain pattern under different conditions comes out. With the Fast Fourier transform (FFT) analysis, the pressure changing law of time domain at the outlet of the volute is investigated under different operating conditions. It shows that the pressure fluctuation in the volute differs under different conditions. The pressure changing law obtained by the numerical simulation at the outlet of the volute accords with the measurement results. Also the pressure fluctuation at the outlet of the volute is closely related to the interaction between impeller and volute.


Sign in / Sign up

Export Citation Format

Share Document