scholarly journals Evaluation of Efficiency of Sediment Transfer Functions in GSTARS Numerical Model

2021 ◽  
Vol 25 (3) ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 335-350 ◽  
Author(s):  
Filipe Galiforni-Silva ◽  
Kathelijne M. Wijnberg ◽  
Suzanne J. M. H. Hulscher

Abstract. Growth of coastal dunes requires a marine supply of sediment. Processes that control the sediment transfer between the subtidal and the supratidal zone are not fully understood, especially in sand flats close to inlets. It is hypothesised that storm surge events induce sediment deposition on sand flats, providing fresh material for aeolian transport and dune growth. The objective of this study is to identify which processes cause deposition on the sand flat during storm surge conditions and discuss the relationship between the supratidal deposition and sediment supply to the dunes. We use the island of Texel (NL) as a case study, of which multiannual topographic and hydrographic datasets are available. Additionally, we use the numerical model XBeach to simulate the most frequent storm surge events for the area. Results show that supratidal shore-parallel deposition of sand occurs in both the numerical model and the topographic data. The amount of sand deposited is directly proportional to surge level and can account for more than a quarter of the volume deposited at the dunes yearly. Furthermore, storm surges are also capable of remobilising the top layer of sediment of the sand flat, making fresh sediment available for aeolian transport. Therefore, in a sand flat setting, storm surges have the potential of reworking significant amounts of sand for aeolian transport in periods after the storm and as such can also play a constructive role in coastal dune development.


2021 ◽  
Author(s):  
Euan Soutter ◽  
Ian Kane ◽  
David Hodgson ◽  
Stephen Flint

Submarine canyons with heads located close to shorelines, known as shore-connected canyons, provide a focussed pathway for basinward sediment transport. Placing greater constraints on the key parameters that control the formation of shore-connected canyons can help us predict the efficiency of sediment export to deep-water under different environmental conditions and through time. Using a numerical model incorporating geomorphic principles, we show that shore-connected canyons are most active when fluvial discharge is high, the continental shelf is steep and narrow, and the magnitude of relative sea-level change is high. The numerical model reproduces observed bathymetric distributions of shore-connected submarine canyons, indicating that the empirical relationships underlying these numerical models are accurate descriptions of shore-connected canyon formation in nature. Our study provides constraints on the key quantifiable parameters controlling shore-connected submarine canyon formation and maintenance, such as fluvial discharge and basin physiography, allowing for more accurate predictions of the efficiency and timing of sediment transfer to the deep sea under different conditions. The model results suggest that; 1) submarine canyons may form frequently on the slope due to submarine processes, but subaerial processes control which submarine canyons are most likely to connect to the shoreline, 2) margin physiography and sediment supply are more influential in driving submarine canyon incision across the shelf and sediment transfer than the exact nature of the gravity flow triggering mechanism, and 3) the stratigraphic records of shore-connected submarine canyons and fans are more influenced by onshore climate and tectonics than eustasy.


Author(s):  
Min Zhang ◽  
Junrong Wang ◽  
Junfeng Du ◽  
Nuno Fonseca ◽  
Galin Tahchiev ◽  
...  

Abstract The paper presents calibration and validation of a time domain numerical model for mooring analysis of a spread moored FPSO in moderate seastates with and without current. The equations of motion are solved in the time domain with a fully coupled method, accounting for linear wave frequency (WF) radiation and diffraction, second order wave drift forces and nonlinear low frequency (LF) damping. The mooring system dynamics is solved by a FEM. Uncalibrated numerical models are based on input from the mooring system, vessel mass, radiation/diffraction analysis, decay tests and current coefficients. WF responses are very well predicted by standard radiation/diffraction linear analysis, therefore the focus is on the LF responses. LF motions are underpredicted by the uncalibrated numerical model. Calibration is performed by comparing simulations with model test data and adjusting hydrodynamic coefficients known to be affected by uncertainty. These include wave drift force coefficients and LF damping. Correction of the drift coefficients is based on empirical quadratic transfer functions (QTFs) identified from the test data by a nonlinear data analysis technique known as “cross-bi-spectral analysis”. The LF damping coefficients are then adjusted by matching low frequency surge and sway spectra from the model tests and from the simulations.


Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


Author(s):  
Peter Rez

In high resolution microscopy the image amplitude is given by the convolution of the specimen exit surface wave function and the microscope objective lens transfer function. This is usually done by multiplying the wave function and the transfer function in reciprocal space and integrating over the effective aperture. For very thin specimens the scattering can be represented by a weak phase object and the amplitude observed in the image plane is1where fe (Θ) is the electron scattering factor, r is a postition variable, Θ a scattering angle and x(Θ) the lens transfer function. x(Θ) is given by2where Cs is the objective lens spherical aberration coefficient, the wavelength, and f the defocus.We shall consider one dimensional scattering that might arise from a cross sectional specimen containing disordered planes of a heavy element stacked in a regular sequence among planes of lighter elements. In a direction parallel to the disordered planes there will be a continuous distribution of scattering angle.


Author(s):  
Hannes Lichte

Generally, the electron object wave o(r) is modulated both in amplitude and phase. In the image plane of an ideal imaging system we would expect to find an image wave b(r) that is modulated in exactly the same way, i. e. b(r) =o(r). If, however, there are aberrations, the image wave instead reads as b(r) =o(r) * FT(WTF) i. e. the convolution of the object wave with the Fourier transform of the wave transfer function WTF . Taking into account chromatic aberration, illumination divergence and the wave aberration of the objective lens, one finds WTF(R) = Echrom(R)Ediv(R).exp(iX(R)) . The envelope functions Echrom(R) and Ediv(R) damp the image wave, whereas the effect of the wave aberration X(R) is to disorder amplitude and phase according to real and imaginary part of exp(iX(R)) , as is schematically sketched in fig. 1.Since in ordinary electron microscopy only the amplitude of the image wave can be recorded by the intensity of the image, the wave aberration has to be chosen such that the object component of interest (phase or amplitude) is directed into the image amplitude. Using an aberration free objective lens, for X=0 one sees the object amplitude, for X= π/2 (“Zernike phase contrast”) the object phase. For a real objective lens, however, the wave aberration is given by X(R) = 2π (.25 Csλ3R4 + 0.5ΔzλR2), Cs meaning the coefficient of spherical aberration and Δz defocusing. Consequently, the transfer functions sin X(R) and cos(X(R)) strongly depend on R such that amplitude and phase of the image wave represent only fragments of the object which, fortunately, supplement each other. However, recording only the amplitude gives rise to the fundamental problems, restricting resolution and interpretability of ordinary electron images:


2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


Sign in / Sign up

Export Citation Format

Share Document