Application Of Materials Science To Celestial Matter, I: Dense Core Of End-Of-Life Stars And Black Holes

2021 ◽  
Vol 2 (2) ◽  
pp. 077
Author(s):  
Jean-Louis Crolet ◽  
Bijan Kermani
2020 ◽  
Vol 7 ◽  
Author(s):  
Alexandra Zvezdin ◽  
Eduardo Di Mauro ◽  
Denis Rho ◽  
Clara Santato ◽  
Mohamed Khalil

ABSTRACT Consumer electronics have caused an unsustainable amount of waste electrical and electronic equipment (WEEE). Organic electronics, by means of eco-design, represent an opportunity to manufacture compostable electronic devices. Waste electrical and electronic equipment (WEEE), or e-waste, is defined as the waste of any device that uses a power source and that has reached its end of life. Disposing of WEEE at landfill sites has been identified as an inefficient solid waste processing strategy as well as a threat to human health and the environment. In the effort to mitigate the problem, practices such as (i) designing products for durability, reparability, and safe recycling, and (ii) promoting closed-loop systems based on systematic collection and reuse/refurbishment have been identified. In this perspective, we introduce a complementary route to making electronics more sustainable: organic electronics based on biodegradable materials and devices. Biodegradable organic electronics lie at the intersection of research in chemistry, materials science, device engineering, bioelectronics, microbiology, and toxicology. The design of organic electronics for standardized biodegradability will allow composting to be an end-of-life option.


2021 ◽  
Vol 13 (24) ◽  
pp. 13910
Author(s):  
Miriam Ribul

Materials science breakthroughs have regenerated high value fibres from end-of-life cellulose-based textiles that can be introduced into existing textile fabrication processes from raw material to textile product in established textile value chains. Scientific developments with regenerated cellulose fibres obtained from waste textiles suggest their potential to replace virgin resources. The current scale-up of regeneration technologies for end-of-life cellulose-based textiles towards pilot and commercial scales can potentially achieve a future materials circularity, but there is a lack of a long-term view of the properties of materials after consecutive recycling stages take place. Cellulose-based materials cannot be infinitely recycled and maintain the same quality, a factor which may provide new challenges for future textile processes in the context of the circular bioeconomy. This paper maps collaborative design and materials science projects that use regenerated cellulose obtained from waste feedstock according to materials in the value chain they seek to substitute. It also presents four new processes that use regenerated cellulose materials in relation to their intervention in the value chain (as determined in a PhD investigation). A framework is presented to demonstrate how these circular material design processes take place at earlier stages of the textile value chain after subsequent regeneration stages.


Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


Author(s):  
C. Colliex ◽  
P. Trebbia

The physical foundations for the use of electron energy loss spectroscopy towards analytical purposes, seem now rather well established and have been extensively discussed through recent publications. In this brief review we intend only to mention most recent developments in this field, which became available to our knowledge. We derive also some lines of discussion to define more clearly the limits of this analytical technique in materials science problems.The spectral information carried in both low ( 0<ΔE<100eV ) and high ( >100eV ) energy regions of the loss spectrum, is capable to provide quantitative results. Spectrometers have therefore been designed to work with all kinds of electron microscopes and to cover large energy ranges for the detection of inelastically scattered electrons (for instance the L-edge of molybdenum at 2500eV has been measured by van Zuylen with primary electrons of 80 kV). It is rather easy to fix a post-specimen magnetic optics on a STEM, but Crewe has recently underlined that great care should be devoted to optimize the collecting power and the energy resolution of the whole system.


Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


Author(s):  
Hannes Lichte ◽  
Edgar Voelkl

The object wave o(x,y) = a(x,y)exp(iφ(x,y)) at the exit face of the specimen is described by two real functions, i.e. amplitude a(x,y) and phase φ(x,y). In stead of o(x,y), however, in conventional transmission electron microscopy one records only the real intensity I(x,y) of the image wave b(x,y) loosing the image phase. In addition, referred to the object wave, b(x,y) is heavily distorted by the aberrations of the microscope giving rise to loss of resolution. Dealing with strong objects, a unique interpretation of the micrograph in terms of amplitude and phase of the object is not possible. According to Gabor, holography helps in that it records the image wave completely by both amplitude and phase. Subsequently, by means of a numerical reconstruction procedure, b(x,y) is deconvoluted from aberrations to retrieve o(x,y). Likewise, the Fourier spectrum of the object wave is at hand. Without the restrictions sketched above, the investigation of the object can be performed by different reconstruction procedures on one hologram. The holograms were taken by means of a Philips EM420-FEG with an electron biprism at 100 kV.


Author(s):  
J.C.H. Spence ◽  
J. Mayer

The Zeiss 912 is a new fully digital, side-entry, 120 Kv TEM/STEM instrument for materials science, fitted with an omega magnetic imaging energy filter. Pumping is by turbopump and ion pump. The magnetic imaging filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient parallel (area) detection. The energy loss intensity distribution may also be displayed on the screen, and recorded by scanning it over the PMT supplied. If a CCD camera is fitted and suitable new software developed, “parallel ELS” recording results. For large fields of view, filtered images can be recorded much more efficiently than by Scanning Reflection Electron Microscopy, and the large background of inelastic scattering removed. We have therefore evaluated the 912 for REM and RHEED applications. Causes of streaking and resonance in RHEED patterns are being studied, and a more quantitative analysis of CBRED patterns may be possible. Dark field band-gap REM imaging of surface states may also be possible.


Author(s):  
Robert M. Glaeser ◽  
Bing K. Jap

The dynamical scattering effect, which can be described as the failure of the first Born approximation, is perhaps the most important factor that has prevented the widespread use of electron diffraction intensities for crystallographic structure determination. It would seem to be quite certain that dynamical effects will also interfere with structure analysis based upon electron microscope image data, whenever the dynamical effect seriously perturbs the diffracted wave. While it is normally taken for granted that the dynamical effect must be taken into consideration in materials science applications of electron microscopy, very little attention has been given to this problem in the biological sciences.


Author(s):  
M. Rühle ◽  
J. Mayer ◽  
J.C.H. Spence ◽  
J. Bihr ◽  
W. Probst ◽  
...  

A new Zeiss TEM with an imaging Omega filter is a fully digitized, side-entry, 120 kV TEM/STEM instrument for materials science. The machine possesses an Omega magnetic imaging energy filter (see Fig. 1) placed between the third and fourth projector lens. Lanio designed the filter and a prototype was built at the Fritz-Haber-Institut in Berlin, Germany. The imaging magnetic filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient area detection. The energy dispersion at the exit slit (Fig. 1) results in ∼ 1.5 μm/eV which allows imaging with energy windows of ≤ 10 eV. The smallest probe size of the microscope is 1.6 nm and the Koehler illumination system is used for the first time in a TEM. Serial recording of EELS spectra with a resolution < 1 eV is possible. The digital control allows X,Y,Z coordinates and tilt settings to be stored and later recalled.


Author(s):  
Vinayak P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman

The concept of interfacial width is often invoked in many materials science phenomena which relate to the structure and properties of internal interfaces. The numerical value of interface width is an important input parameter in diffusion equations, sintering theories as well as in many electronic devices/processes. Most often, however, this value is guessed rather than determined or even estimated. In this paper we present a method of determining the effective structural and electronic- structural width of interphase interfaces using low- and core loss fine structure effects in EELS spectra.The specimens used in the study were directionally solidified eutectics (DSEs) in the system; NiO-ZrO2(CaO), NiO-Y2O3 and MnO-ZrO2(ss). EELS experiments were carried out using a VG HB-501 FE STEM and a Hitachi HF-2000 FE TEM.


Sign in / Sign up

Export Citation Format

Share Document