scholarly journals Effect of FSH and eCG on Alpaca (Vicugna pacos) Oocyte Maturation in vitro

2021 ◽  
Vol 10 (3) ◽  
pp. 156-161

This study evaluated alpaca oocytes that developed to metaphase II (MII), using different concentrations of follicle stimulating hormone (FSH) with and without equine chorionic gonadotropin (eCG) during in vitro maturation. Oocytes were obtained from ovaries of slaughtered alpacas. Oocytes were matured in vitro for 36h in TCM-99 and supplemented in groups with different doses of FSH: 0.5, 0.25, 0μg.mL-1 and eCG: 15, 5, 0IU.mL-1. Oocytes were stained with 2% lacmoid, and examined for their nuclear status. The parameter for comparisons between groups was the percentage of oocytes in MII. There was an interaction between FSH and eCG (P<0.05). A higher percentage of oocytes in MII were obtained when using 0.5µg.mL-1 of FSH with any concentration of 15, 5 or 0IU.mL-1 of eCG [58.4±1.94% (n=78); 59.5±1.94% (n=85); 54.3±0.56% (n=81); P<0.05]. A similar percentage was also found using 0.25µg.mL-1 of FSH plus 15IU.mL-1 of eCG [52.3±1.66% (n=86); P>0.05] followed by 0.25µg.mL-1 of FSH with 5 or 0IU.mL-1 of eCG [47.3±1.94% (n=82); 45.3±1.94% (n=86); P<0.05]. The lowest maturation percentages were found using any concentration of eCG without FSH [8.2±0.73% (n=84); 8.0±0.66% (n=74); 11.4±1.23% (n=71); P<0.05]. In conclusion, the addition of eCG to the maturation medium would reduce the amount of FSH required in the in vitro maturation of alpaca oocytes.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Bedenk ◽  
N Jančar ◽  
E Vrtačnik-Bokal ◽  
I Virant-Klun

Abstract Study question Does the addition of recombinant AMH to the in vitro maturation (IVM) medium improve the maturation of GV oocytes after controlled ovarian hormonal stimulation? Summary answer Our results show that the addition of recombinant AMH to the in vitro maturation medium improves the maturation rate of GV oocytes. What is known already Anti-Müllerian hormone (AMH) is an important hormone involved in the process of sex differentiation during embryonic development. At the transition to the 21. century, more and more researchers have studied the role of AMH in ovarian function, especially its impact on folliculogenesis. AMH is becoming one of the main biomarkers of ovarian reserve and ovarian-specific disease, however, little is known about its effect on human oocyte maturation. Therefore, we matured immature GV (germinal vesicle) oocytes in IVM medium with recombinant AMH to assess its effect compared to the conventional IVM procedure with FSH and hCG. Study design, size, duration In this two-year prospective study, we compared the maturation rate of four groups of immature (GV) oocytes matured in maturation medium with added i) AMH (n = 15), ii) AMH+FSH+hCG (n = 44), iii) FSH+hCG (conventional; n = 22), and iv) hormone-free maturation medium (control; n = 15). Each oocyte was matured in vitro for a maximum of 28 hours and monitored by time-lapse microscopy to assess the time of GV breakdown (MI) and extrusion of the polar body (MII). Participants/materials, setting, methods Ninety-six GV oocytes of 46 patients (aged &lt; 38 years, involved in the ICSI programme) after short antagonist protocol of controlled ovarian hormonal stimulation were included after written informed consent. IVM of oocytes was performed in the MediCult IVM System (LAG and IVM medium, Cooper Surgical, Denmark) with added hormones, and in a CO2 incubator equipped with the PrimoVision time-lapse microscope (Vitrolife, Sweden). Main results and the role of chance IVM medium with added recombinant AMH gave the best result with all (100 %) oocytes matured in vitro. In conventional IVM medium with FSH and hCG, the oocyte maturation rate was poorer, with 68 % of oocytes matured in vitro. An even lower oocyte maturation rate (34 %) was observed in IVM medium with AMH, FSH and HCG, which might be explained by the antagonistic action of these hormones. In a group of control oocytes, 25 % of oocytes matured in vitro. The mean time to GV breakdown (MI stage) was 3.7 hours and to polar body release (MII stage) 20,5 hours. The time to MI stage was quite comparable in all groups of oocytes (3.5, 3.8 and 3.7 hours). There was a tendency for the polar body to be released later if AMH was added to the maturation medium (21.5 and 20.2 vs. 19.9 hours) but differences were not statistically significant, as revealed by Student’s t-test. In the control group of oocytes, these times were prolonged (4.2 and 22.2 hours) due to slow spontaneous maturation. These preliminary results demonstrate that AMH could directly affect the oocyte maturation in vitro. Limitations, reasons for caution The limitation is the relatively small number of oocytes included; GV oocytes accounted for less than 10 % of all oocytes in the in vitro fertilisation (ICSI) programme. Moreover, the proportion of GV oocytes spontaneously matured to MI stage before the start of the experiment and were therefore not included. Wider implications of the findings Based on our data, we believe that AMH directly affects human oocyte maturation in vitro. Despite the common knowledge that AMH regulates the recruitment of growing ovarian follicles, it appears that the addition of AMH to the maturation medium can improve the human oocyte maturation in vitro. Trial registration number 0120-546/2018/6


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Viran. . Klun ◽  
J Bedenk ◽  
N Jancar

Abstract Study question Do different types of cancer affect the success of oocyte maturation in vitro compared to infertile women included in the in vitro fertilization (IVF) program? Summary answer Cancer does not adversely affect oocyte maturation in vitro, with the exception of breast cancer, compared to infertile women in the in vitro fertilization program. What is known already Vitrification and storage of oocytes in liquid nitrogen is one of the real options for maintaining reproductive function in cancer patients. Despite careful hormonal stimulation of the ovaries, however, the proportion of oocytes is immature and lost to the patient. In vitro maturation of oocytes can play an important role in resolving immature oocytes and increasing the chances of conception in cancer patients. Moreover, it can mean a safe way to store oocytes when ovarian hormonal stimulation could worsen the disease. Therefore, the aim of this study was to determine whether different types of cancer affect oocyte in vitro maturation. Study design, size, duration After ovarian stimulation in 18 cancer patients, the number and maturity of oocytes were compared to 21 infertile patients in the IVF program over a three-year period. In both groups, 119 germinal vesicle-GV oocytes were matured in vitro to compare the maturation rate. After IVF in a subset of 17 infertile patients, the fertilization of in vitro and in vivo matured oocytes was compared in the same cycles. The procedure was considered in cancer patients. Participants/materials, setting, methods In this prospective study, forty-five GV oocytes in cancer patients and 74 GV oocytes in infertile patients underwent in vitro maturation procedure. Each oocyte was matured in vitro in the MediCult IVM System by conditioning in LAG medium and maturation for up to 28 hours in IVM medium with added hormones FSH and hCG, in coculture with cumulus cells from mature oocytes in the same patients. Oocytes were fertilized by intracytoplasmic sperm injection (ICSI). Main results and the role of chance After controlled ovarian hormonal stimulation, 198 oocytes were retrieved in cancer patients and 259 oocytes in infertile women and there were no significant differences in the number of retrieved oocytes, proportion of degenerated oocytes and proportion of GV oocytes. In cancer patients, the proportion of oocytes that matured in vitro was lower than in infertile patients (66.0 vs. 80.0%), but the difference was not significant. Among cancer patients, the oocyte maturation rate tended to be lower in patients with breast cancer than in patients with other cancers (54.5% vs. 81.2%; difference not significant). However, in patients with breast cancer, significantly fewer oocytes matured in vitro than in infertile patients (54.5% vs. 80.0%; P &lt; 0.05, Chi-Square test) even though they tended to be younger (29.3 ± 7.4 vs. 33.4 ± 5.0 years; non-significant difference). After in vitro maturation, there was a 13% increase in mature oocyte yield in cancer patients and a 20.1% increase in infertile women with no significant difference observed. After ICSI in a subset of infertile women, there was approximately the same fertilization rate between oocytes matured in vitro and in vivo (55.1% vs. 57.0%) in the same cycles. Limitations, reasons for caution For ICSI in oocytes matured in vitro, we had to use semen collected the day before, while oocytes matured in vivo were fertilized with fresh semen in the same cycle. Therefore, we could not compare the development of embryos in both groups. Wider implications of the findings: In vitro maturation of oocytes in connection with their vitrification or vitrification of embryos after their fertilization appears to be a valuable way to maintain the fertility of young cancer patients, but a worse outcome is expected in breast cancer patients. Trial registration number National Medical Ethical Committee Approval, No. 0120–222/2016–2; KME 115/04/16.


2012 ◽  
Vol 24 (5) ◽  
pp. 656 ◽  
Author(s):  
Islam M. Saadeldin ◽  
Ok Jae Koo ◽  
Jung Taek Kang ◽  
Dae Kee Kwon ◽  
Sol Ji Park ◽  
...  

Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus–oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10–6 M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4 × 10–6 M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine–paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.


2020 ◽  
Vol 13 (11) ◽  
pp. 2443-2446
Author(s):  
Diah Tri Widayati ◽  
Mulyoto Pangestu

Background and Aim: Bligon goat is a crossbreed between Etawah and Kacang goat. This crossbreed goat is mostly reared by small farmers. In vitro maturation allows female goat (does) contributes toward reproduction despite the fact that the animal has been slaughtered. The aim of this study was to determine the in vitro maturation rate of Bligon goat oocytes supplemented with follicle-stimulating hormone (FSH), and their ability for further embryonic development after in vitro fertilization. Materials and Methods: Experiment was conducted at the Laboratory of Animal Physiology and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, using Bligon goat ovaries obtained from local slaughterhouse around Yogyakarta. One thousand five hundred cumulus-oocyte complexes were matured for 24 h in tissue culture medium 199 supplemented with 50 IU/L FSH or without FSH (control). First, matured oocytes were evaluated its morphology based on the expansion of cumulus cells and PB1 extrusion. Next, 600 oocytes were then stained with 1% aceto-orcein to examine maturation based on changes in the configuration of chromosomes and nuclear membrane breakdown. Oocytes were considered mature when they reached metaphase II. To prove the ability of mature oocytes to develop into embryos, 900 oocytes were processed for fertilization in vitro. The data were analyzed using analysis of variance. Results: The results indicated that FSH supplementation significantly increased oocyte maturation rate (65.21±7.26 vs. 43.25±6.23%) as indicated by extrusion of PB1 and homologous chromosome pairing and lined in the equator. The rate of degeneration was lower in the FSH-supplemented medium (3.21±0.25 vs. 10.17±3.15%). The blastocyst stage of oocyte developed embryos was reached by 12.43±2.15% and 22.28±4.86% of the control and treatment groups, respectively. Conclusion: FSH supplementation significantly improves oocyte maturation and yields mature oocytes for future embryo development in vitro.


Author(s):  
Alan da Silva LIRA ◽  
Ricardo de Macedo CHAVES ◽  
Felipe de Jesus MORAES JUNIOR ◽  
Sergio Henrique COSTA JUNIOR ◽  
Brenda Karine Lima do AMARAL ◽  
...  

ABSTRACT We aimed to assess the effects of melatonin in the in vitro production of bovine embryos. Our experiment was conducted at the Laboratório de Reprodução Animal of the Universidade Estadual do Maranhão. The cumulus-oocyte complexes (COCs) were distributed among treatments at concentrations of 0, 10-1, 10-3 and 10-5 µMol/L melatonin. Our experiment was further divided into two: the first was to assess the effect of different concentrations of melatonin (treatments) on the maturation rate of COCs, and the second was to assess the effects of melatonin treatments on the in vitro production of bovine embryos. The results from the first experiment demonstrated no significant difference between the in vitro maturation rate of the cultivated COCs in treatments with melatonin. In the second experiment, however, melatonin treatments yielded statistically higher cleavage, morula and blastocyst rates in the 10-5 µM group (52.9%, 52.9%, and 35.3%, respectively), and lower rates in the 10-1 µM group (19.5%, 19.5% and 7.8%, respectively), compared to the others. The control group (no melatonin) and the 10-3 µM group showed similar results. We concluded that supplementation of melatonin in the in vitro maturation medium resulted in no improvement in the oocyte maturation rate, but in the in vitro production of embryos at different concentrations, the 10-5 µM group displayed better results, but with no improvement in the variables (P < 0.05).


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2011 ◽  
Vol 56 (No. 6) ◽  
pp. 284-291 ◽  
Author(s):  
Heidari Amale M ◽  
Zare Shahne A ◽  
A. Abavisani ◽  
S. Nasrollahi

Nitric oxide (NO) is a biological signaling molecule that plays a crucial role in oocyte maturation of mammalians. It is generated by the nitric oxide synthase (NOS) enzyme from l-arginine. Although the effect of NO has been shown in oocyte maturation of some species, there is no report about its effect on the in vitro maturation of sheep oocyte. So, this study aimed to investigate the importance of NO/NOS system in the in vitro maturation of ovine oocytes. Different concentrations of L-NAME (a NOS inhibitor) (0.1, 1 and 10mM) were added to maturation medium to evaluate the effect of inhibiting NOS on cumulus expansion and meiotic resumption of sheep oocytes. After 26 h culture, low and medium concentrations of L-NAME (0.1 and 1mM) had no significant effect on cumulus expansion, however, its higher concentration (10mM) decreased percentage of oocytes with total cumulus expansion as compared to control (P &lt; 0.05). The extrusion of the first polar body was also suppressed in a dose-dependent manner, so that the addition of 10mM L-NAME to maturation medium significantly stopped oocytes in GV stage (P &lt; 0.05). Moreover, to confirm the results and to evaluate if this effect is reversible, 0.1mM sodium nitroprusside (SNP, a NO donor) was added only to the maturation medium which had the highest concentration of L-NAME (10mM). The concomitant addition of NOS inhibitor with NO donor reversed the inhibitory effect of L-NAME on cumulus expansion and meiotic maturation. These results indicated that NO/NOS system is involved in the maturation of sheep oocytes.


2020 ◽  
Vol 13 (10) ◽  
pp. 2126-2132
Author(s):  
A. A. Muhammad Nur Kasman ◽  
Budi Santoso ◽  
Widjiati Widjiati

Background and Aim: The combination of vitrification techniques and in vitro maturation can reduce oocyte competence. Mitogen-activated protein kinase and maturation-promoting factor are significant in oocyte meiotic maturation regulation. This study aimed to analyze vitrification's effect, after warming followed by in vitro maturation, on the expressions of protein 38 (p38), cyclin-dependent kinase 1 (CDK1), and cyclin B and oocyte maturation level. Materials and Methods: Immature goat oocytes were soaked in vitrification and warming solutions. The procedure was followed by in vitro maturation and in vitro maturation without post-warming vitrification as a control. These oocytes, along with their cumulus, were vitrified using hemistraw in liquid nitrogen. Oocyte maturation was carried out in a maturation medium that was added with 10 μg/mL of FSH, 10 μg/mL of LH, and 1 μg/mL E2 for 22 h. The expressions of p38, CDK1, and cyclin B were observed using immunocytochemical methods, which were assessed semiquantitatively according to the modified Remmele method. The oocyte maturation level was observed using the aceto-orcein staining method based on the achievement of chromosomes up to the metaphase II stage and/or the formation of the polar body I. Results: p38 expression in vitrified oocytes after warming, followed by in vitro maturation, increased insignificantly (p≥0.05), with the acquisition of 3.91±2.69 and 2.69±0.50 in the control oocytes. CDK1 expression in vitrified oocytes decreased significantly (p≤0.05) after warming, followed by in vitro maturation, with the acquisition of 2.73±1.24 and 7.27±4.39 in the control oocytes. Cyclin B expression in vitrified oocytes decreased insignificantly (p≥0.05) after warming, followed by in vitro maturation, with the acquisition of 3.09±1.4 and 4.18±2.61 in the control oocytes. The proportion of vitrified oocyte maturation levels after warming, followed by in vitro maturation, decreased significantly (p≤0.05), with the acquisition of 45.45% and 77.27% in the control oocytes. Conclusion: This study concluded that vitrification after warming resulted in an insignificant increase in p38 expression, a significant decrease in CDK1 expression, an insignificant decrease in cyclin B expression, and a significant reduction in oocyte maturation levels.


Sign in / Sign up

Export Citation Format

Share Document