scholarly journals Evaluation of the effect of shear wall with and without opening on the ductility of RC structure

Author(s):  
Osamah Sarhan

The ductility of a structure is an important factor that should be taken under consideration in the design against lateral loads like an earthquake. This paper presents the effect of the shear wall on the ductility of the structure and the effects of the presence of opining in it on the ductility. Eighteen 2D moment-resisting frames (MRFs), with the shear wall (SW) and SW with opening structural models, were created and designed. The pushover analyses using ETABS 19 software were performed on the designed models to calculate the ductility of the structural models. The obtained results show that the shear wall in the models increases the ductility of the structures significantly, while the presence of an opening decreases it slightly. Besides, the increase in the number of storeys increases the ductility of MRF models but decreases the ones with SW. Oppositely; the increase in span length reduced the ductility of MRF models and increases the docility of the models with SW

2020 ◽  
pp. 875529302097120
Author(s):  
Xingquan Guan M.EERI ◽  
Henry Burton M.EERI ◽  
Mehrdad Shokrabadi

A number of simplified methodologies have been developed and used to estimate seismic drift demands in buildings. However, none of them have been systematically tested against a large number of buildings subjected to a diverse set of ground motions. This is partly attributed to the lack of existing databases of building designs, nonlinear structural models, and simulated seismic responses. This article introduces the development of a comprehensive database, which includes 621 special steel moment-resisting frames designed in accordance with modern codes and standards and their corresponding nonlinear structural models and seismic responses (i.e. peak story drifts, peak floor accelerations, and residual story drifts). The seismic responses for a subgroup of 100 steel moment-resisting frames subjected to three groups of site-specific ground motions (with 40 records each), at the service-level, design-based, and maximum considered earthquakes, are also included. The database has been utilized by the authors (in a separate study) to evaluate the performance of existing methods and develop data-driven and hybrid (combination of mechanics-based and data-driven) models for estimating seismic structural drift demands. The database can also be utilized in the development and implementation of a performance-based analytics-driven seismic design methodology.


Author(s):  
Ahmad Sheikh Abdallah ◽  
Safwan Chahal

The rapid growth of urban population and limited land space have greatly influenced the development of high-rise structures. Lateral loads have an important effect on the design as the building height increases. In order to resist lateral loads, safety and minimum damage should be the prime concern when designing tall buildings. To meet these requirements, the structure should have adequate lateral strength and lateral stiffness and sufficient ductility. Among the various structural systems, shear wall systems or moment resisting frame systems could be a point of choice for designers. Thus, it is important to review and observe the behavior of these systems under seismic effect. This study compared the seismic response of the above structural systems using a case study application at variable seismic zones (Zone 2B, Lebanon Zone, Zone 3, and Zone 4) and at different building stories (Eight and 12-story building). The seismic response is measured in term of time-period, maximum story displacement, maximum story drift, amount of steel and concrete needed. The outcome of this study portrayed that a shear wall system is more efficient in terms of cost and lateral load resistivity regardless of the building height and in the four seismic zones mentioned before.


1995 ◽  
Vol 22 (1) ◽  
pp. 121-134
Author(s):  
R. M. Korol ◽  
M. L. Daali

A series of tests on W-shaped beam-to-column connections subjected to quasi-static cyclic loading was conducted to assess their ductility and energy dissipation capabilities. The specimens represent beams in ductile moment resisting frames undergoing alternating lateral loads. The aim of this study was to assess and compare the rotation capacity and energy absorption of locally web-stiffened beams with unstiffened beams. Of direct relevance to seismically designed moment resisting steel frames, the experimental results of this research clearly highlight the superiority of herring-bone style web-stiffened specimens over vertically web-stiffened or unstiffened specimens. Key words: earthquake, response, steel, moment resisting frames, stiffener, cyclic loading.


Structures ◽  
2015 ◽  
Vol 3 ◽  
pp. 81-89 ◽  
Author(s):  
Farshad Hashemi Rezvani ◽  
Amir Mohammad Yousefi ◽  
Hamid Reza Ronagh

Author(s):  
Jean Pierre Lukongo Ngenge ◽  
Abdallah M. S. Wafi

This paper gives a brief presentation about different types of analysis, plastic hinge, moment-resisting frames (MRFs) and shear walls (SWs) in reinforced concrete (RC) Structures. ETABS computer software is employed to model and analyse the structures applying the pushover. The performances of the modelled structures are also evaluated considering different parameters such as the number of stories, spans length, shear walls, reinforcement yield strength and characteristic strength of concrete. The study includes two cases, which are moment-resisting frames with and without shear walls (i.e. MRFs and MRF-SWs, respectively). Each case covers low-, mid- and high-rise buildings. In this regard, a comparative study has been performed for the results obtained from all models. It was observed that the stiffness of MRFs compared to MRF-SWs was less and also the stiffness of low-rise frames was higher than that of mid-rise and high-rise frames. Technically this means that a low-rise building is stiffer than a mid-rise building and a mid-rise building is stiffer than a high-rise building. Additionally, when the span length increases, the stiffness of the building decreases. Therefore, it can be concluded that the span length is inversely proportional to the stiffness. Finally, all stiffness values were calculated taking into consideration the displacement and base shear at the first hinge formation on the pushover curve of each model.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1646-1664
Author(s):  
Elena Elettore ◽  
Annarosa Lettieri ◽  
Fabio Freddi ◽  
Massimo Latour ◽  
Gianvittorio Rizzano

Sign in / Sign up

Export Citation Format

Share Document