COMPARISON OF SHEAR WALLS AND MOMENT-RESISTING FRAMES IN EARTHQUAKE RESISTING BUILDINGS’ DESIGN

Author(s):  
Ahmad Sheikh Abdallah ◽  
Safwan Chahal

The rapid growth of urban population and limited land space have greatly influenced the development of high-rise structures. Lateral loads have an important effect on the design as the building height increases. In order to resist lateral loads, safety and minimum damage should be the prime concern when designing tall buildings. To meet these requirements, the structure should have adequate lateral strength and lateral stiffness and sufficient ductility. Among the various structural systems, shear wall systems or moment resisting frame systems could be a point of choice for designers. Thus, it is important to review and observe the behavior of these systems under seismic effect. This study compared the seismic response of the above structural systems using a case study application at variable seismic zones (Zone 2B, Lebanon Zone, Zone 3, and Zone 4) and at different building stories (Eight and 12-story building). The seismic response is measured in term of time-period, maximum story displacement, maximum story drift, amount of steel and concrete needed. The outcome of this study portrayed that a shear wall system is more efficient in terms of cost and lateral load resistivity regardless of the building height and in the four seismic zones mentioned before.

As per the previous records of earthquakes, there is an increase in the demand of use of earthquake resisting structures. So it is necessary and prime concern of designer to design and analyses the structures by considering seismic effect to provide adequate safety to structure against lateral loads. Many existing RC frame buildings located in seismic zones are deficient to withstand earthquakes. Insufficient lateral resistances, improper shape and poor detailing of reinforcement are the main reasons for inadequate seismic performance of multi-storey building. Shear wall system is one of the most commonly used lateral-load resisting technique for high-rise buildings. Shear walls have very high in-plane strength and stiffness, which can be used simultaneously for resisting large horizontal and gravity loads. In tall buildings, it is very important to ensure adequate lateral stiffness to resist lateral load. The aim of this work is to determine the most effective shape of building with their optimum location of shear wall in multi-storey buildings. For this purpose five different shaped (i.e. square shape, rectangular shape, T-shape, U-shape and H-shape) fifteen storeyed building models each has been with their optimum location of shear wall. Building plan area and shear wall area are same for all different shaped fifteen storeyed building models. Models are analyzed in earthquake zone IV for comparing storey displacement, storey drift, storey shear and time period of buildings. Earthquake load is calculated as per IS: 1893-2016 (Part-1), the various parameters like response reduction factor, importance factor, zone factor are taken from IS: 1893-2016 (Part-1) and are applied to the buildings located in Zone IV. The buildings are modeled and analyzed using software ETAB 2017 and finally concluded that the square shaped building with their optimum location of shear wall is more effective other than different shaped buildings to control the lateral displacement in up to 15 stories buildings.


2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


Author(s):  
Siddhesh Bisane

Abstract: Structural analysis is the science of determining the effects of different loads on structures. Structural stability and stiffness are a main concern in any high-rise structures. Shear walls are structural members that are mainly responsible for resisting lateral loads predominant on structures. They are mainly responsible to increase the stiffness, reduce story drift and displacement. In order to have a comprehensive understanding about the contribution of shear wall, following research is carried out. This research involves comparing two G+16 structures; one without a shear wall and one with it. The structure has 4 bays of 3m each along X direction and Z direction. In this, we will see how shear wall resists lateral sway and reduces story drift and increases stiffness. As the height increases, the shear wall absorbs more lateral load than the frame. The software to be used for analysis is STAADPro. Keywords: STAADPro, Stiffness, storey displacement, storey drift.


2017 ◽  
Vol 259 ◽  
pp. 173-177
Author(s):  
Arthur L. Rocha ◽  
Marcelo de A. Ferreira ◽  
Wilian dos S. Morais ◽  
Bruna Catoia

Precast structures for multi-storey buildings can be designed with economy, safety and high performance. However, depending on the height of the building and the intensity of the lateral loads, the lateral stability system must be carefully chosen in order to maximize the global structural performance. In Brazil, the most common method for lateral stability is achieved by moment resisting precast-frames, wherein the moment-rotation response of the beam-column connections are responsible to provide the frame action, which will govern the distribution of internal forces and the sway distribution along the building height. On the other hand, in Europe, bracing systems comprised by shear walls or infill walls are mostly used, wherein beam-column connections are designed as hinged. The aim of this paper is to present a comparison between these methods for lateral stability, applying nine structural simulations with moment resisting precast-frames, shear walls and infill walls solutions, divided in three groups - 3 building with 5 storeys (21 meters high), 3 buildings with 10 storeys (41 meters high) and 3 building with 20 storeys (81 meters high). All first storeys are 5 meters high, while all the others are 4 meters high. The results from all structural analyses are compared. As conclusion, while moment-resisting beam-column connections are more feasible for applying in low-rise precast buildings, the use of shear walls and infill walls are more efficient for tall buildings due to decrease of lateral displacements, having a reduction of second order effects but also increasing the reactions at the foundations of bracing elements.


2013 ◽  
Vol 351-352 ◽  
pp. 833-837
Author(s):  
Ji Liang Liu ◽  
Hui Chen Cui ◽  
Ming Jin Chu ◽  
Jian Qun Hou

The shear wall built with precast two-way hollow slab is an innovated precast concrete shear wall suitable for housing industrialization. Two shear walls built with precast two-way hollow slabs were tested pseudo-statically under low cyclic lateral loads to acquire their failure process and modes. The effect of the axial compression load was investigated. The study proved that vertical cracks along the vertical holes of the new type shear wall have been appeared to avoid brittle shear failure, and the shear wall developed integral section wall to walls-columns combination. As the results, the shear walls have the adequate deformability. The test results showed that with the increase of axial compressive ratio, crack development has been limited and the energy dissipation capacity has been improved. It also can be found that with the increase of the axial compressive load, shear capacity of the new type shear walls have been improved.


2013 ◽  
Vol 40 (9) ◽  
pp. 875-886 ◽  
Author(s):  
Jagmohan Humar ◽  
Marjan Popovski

The roof framing in single-storey buildings with large foot prints, generally used for commercial, educational, or institutional purposes, often consists of a flexible steel deck or wood panel diaphragm. Resistance to seismic lateral loads is provided by steel bracings, masonry shear walls, concrete shear walls, wood panel shear walls, or cold formed wall systems. The response of such buildings to seismic loads is strongly affected by the flexibility of the roof diaphragm. Diaphragm flexibility alters the manner in which the inertia forces, shears, and bending moments are distributed along the length of the diaphragm. In addition, it causes a significant increase in the ductility demand on the lateral load resisting system that is expected to be strained into the inelastic range under the design earthquake. Results of a study on the linear and nonlinear seismic response of buildings with flexible diaphragms are presented.


Author(s):  
Bashar Iqbal

Abstract: The requirement of tall building in recent years increase the construction to satisfy the need of human beings. Very tall buildings located in high velocity wind area are highly sensitive therefore calculation and analysis of wind load is very impotent. Due to change in climatic condition the basic wind speed are increases. The main aim of this paper is to introducing the different techniques which is used to reduce the effect of wind load or lateral loads. Keywords: wind analysis, comparative analysis, TMD (tuned mass damper),friction damper, shear wall


Earthquake is an unexpected and expensive disaster for both livelihood and economy. In the modern day construction, there has been a lot of importance to make the structure resistant against lateral loads for multi storied building. Shear walls are an option of lateral load resisting system. The Concept of designing shear wall is to provide building structure with sufficient strength and deformation capacity to sustain the demands imposed by lateral loads with adequate margin of safety. The study focuses on effect of shear wall on R.C. building at different heights. For this purpose five models of different heights 15m, 30m, 45m, 60m and 75m and with different aspect ratios of 1.33, 0.66, 0.44, 0.33 and 0.26 respectively have been considered. All the models were designed for seismic zone V. For analysis purpose response spectrum method of analysis is considered as per IS: 1893-2002. The comparative study has been done for base shear, storey displacement, storey drift and storey stiffness. Utilization of shear walls when placed at corners of the building of low aspect ratio in high rise buildings is more effective compared to the low rise buildings of higher aspect ratio, as it gives the larger base shear and lesser displacement. The storey stiffness and storey drift is greatly improved when shear wall is placed at corners of the building


Shear walls are a structural system which gives solidness or stability to structures from lateral loads like wind, seismic loads. The structural systems are fabricated by reinforced concrete, plywood/timber unreinforced, reinforced masonry at which these systems are subdivided into coupled shear walls, shear wall frames, shear panels and staggered walls. The present paper work was made in the interest of studying and analysis of various research works involved in enhancement of shear walls and their behaviour towards lateral loads. In SAP2000 analysis we found that when we apply lateral force between the stories the amount of compression and tension force between the stories obtained is equal to the manual analysis .In STAAD.PRO, we analyzed the light frame shear wall for seismic analysis. The estimated results for light frame shear wall with one storey, shear wall with two storey and shear wall with three storey shown similar to the results which are obtained by using FEM software like STAAD and SAP2000.


Author(s):  
Shaikh Jafar Shaikh Ismail ◽  
L. G. Patil

In present era, there is a huge scarcity of vacant land led to the development of the high rise structures. For the construction of high rise buildings, normal R.C.C. system is not suitable. These problems can overcome by using flat slab system along with shear wall arrangements. It is very essential that the shear wall position should be appropriate in structure so as to achieve the lateral stiffness and solid structure against lateral loads. In this work, two main factors i.e. with drop panels and without drop panels have been considered for 12 storey structures. In each factor 5 models of various locations of shear wall is taken for consideration. For stabilization of variable parameters such as storey displacement, storey stiffness and storey shear etc the seismic investigation & design of structures had carried out in software ETABS. After performing seismic investigation & design of all the structures, result shows that if we provide shear wall at incorrect or inappropriate locations then it will only increase the dead load and cost of the structure. So the final outcomes we have achieved is to provide shear walls at desired position where lateral loads are more predominantly acting on the structures


Sign in / Sign up

Export Citation Format

Share Document