scholarly journals Dataset-Agnostic Vessel Segmentation of Retinal Fundus Images by a Vector Quantized Variational Autoencoder

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Tejas Prabhune ◽  
David Walz

The use of retinal fundus images plays a major role in the diagnosis of various diseases such as diabetic retinopathy. Doctors frequently perform vessel segmentation as a key step for retinal image analysis. This is laborious and time-consuming; AI researchers are developing the U-Net model to automate this process. However, the U-Net model struggles to generalize its predictions across datasets due to variability in fundus images. To overcome these limitations, I propose a cross-domain Vector Quantized Variational Autoencoder (VQ-VAE) that is dataset-agnostic - regardless of the training dataset, the VQ-VAE can accurately classify vessel segmentations. The model does not have to be retrained for each different target dataset, eliminating the need for new data, resources, and time. The VQ-VAE consists of an encoder-decoder network with a custom discrete embedding space. The encoder's result is quantized through this embedding space then decoded to produce a segmentation mask. Both this VQ-VAE and a U-Net model were trained on the DRIVE dataset and tested on the DRIVE, IOSTAR, and CHASE_DB1 datasets. Both models were successful on the dataset they were trained on - DRIVE. However, the U-Net failed to generate vessel segmentation masks when tested with other datasets while the VQ-VAE performed with high accuracy. Quantitatively, the VQ-VAE performed well, having F1 scores from 0.758 to 0.767 across datasets. My model can produce convincing segmentation masks for new retinal image datasets without additional data, time, and resources. Applications include using the VQ-VAE after fundus image is taken to streamline the vessel segmentation process.

2020 ◽  
Vol 10 (11) ◽  
pp. 3777 ◽  
Author(s):  
Yun Jiang ◽  
Falin Wang ◽  
Jing Gao ◽  
Simin Cao

Diabetes can induce diseases including diabetic retinopathy, cataracts, glaucoma, etc. The blindness caused by these diseases is irreversible. Early analysis of retinal fundus images, including optic disc and optic cup detection and retinal blood vessel segmentation, can effectively identify these diseases. The existing methods lack sufficient discrimination power for the fundus image and are easily affected by pathological regions. This paper proposes a novel multi-path recurrent U-Net architecture to achieve the segmentation of retinal fundus images. The effectiveness of the proposed network structure was proved by two segmentation tasks: optic disc and optic cup segmentation and retinal vessel segmentation. Our method achieved state-of-the-art results in the segmentation of the Drishti-GS1 dataset. Regarding optic disc segmentation, the accuracy and Dice values reached 0.9967 and 0.9817, respectively; as regards optic cup segmentation, the accuracy and Dice values reached 0.9950 and 0.8921, respectively. Our proposed method was also verified on the retinal blood vessel segmentation dataset DRIVE and achieved a good accuracy rate.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 110
Author(s):  
Ahmad Firdaus Ahmad Fadzil ◽  
Zaaba Ahmad ◽  
Noor Elaiza Abd Khalid ◽  
Shafaf Ibrahim

Retinal fundus image is a crucial tool for ophthalmologists to diagnose eye-related diseases. These images provide visual information of the interior layer of the retina structures such as optic disc, optic cup, blood vessels and macula that can assist ophthalmologist in determining the health of an eye. Segmentation of blood vessels in fundus images is one of the most fundamental phase in detecting diseases such as diabetic retinopathy. However, the ambiguity of the retina structures in the retinal fundus images presents a challenge for researcher to segment the blood vessels. Extensive pre-processing and training of the images is necessary for precise segmentation, which is very intricate and laborious. This paper proposes the implementation of object-oriented-based metadata (OOM) structures of each pixel in the retinal fundus images. These structures comprise of additional metadata towards the conventional red, green, and blue data for each pixel within the images. The segmentation of the blood vessels in the retinal fundus images are performed by considering these additional metadata that enunciates the location, color spaces, and neighboring pixels of each individual pixel. From the results, it is shown that accurate segmentation of retinal fundus blood vessels can be achieved by purely employing straightforward thresholding method via the OOM structures without extensive pre-processing image processing technique or data training.      


2020 ◽  
Author(s):  
Alejandro Noriega ◽  
Dalia Camacho ◽  
Daniela Meizner ◽  
Jennifer Enciso ◽  
Hugo Quiroz-Mercado ◽  
...  

Background: The automated screening of patients at risk of developing diabetic retinopathy (DR), represents an opportunity to improve their mid-term outcome and lower the public expenditure associated with direct and indirect costs of a common sight-threatening complication of diabetes. Objective: In the present study, we aim at developing and evaluating the performance of an automated deep learning-based system to classify retinal fundus images from international and Mexican patients, as referable and non-referable DR cases. In particular, we study the performance of the automated retina image analysis (ARIA) system under an independent scheme (i.e. only ARIA screening) and two assistive schemes (i.e., hybrid ARIA + ophthalmologist screening), using a web-based platform for remote image analysis. Methods: We ran a randomized controlled experiment where 17 ophthalmologists were asked to classify a series of retinal fundus images under three different conditions: 1) screening the fundus image by themselves (solo), 2) screening the fundus image after being exposed to the opinion of the ARIA system (ARIA answer), and 3) screening the fundus image after being exposed to the opinion of the ARIA system, as well as its level of confidence and an attention map highlighting the most important areas of interest in the image according to the ARIA system (ARIA explanation). The ophthalmologists' opinion in each condition and the opinion of the ARIA system were compared against a gold standard generated by consulting and aggregating the opinion of three retina specialists for each fundus image. Results: The ARIA system was able to classify referable vs. non-referable cases with an area under the Receiver Operating Characteristic curve (AUROC), sensitivity, and specificity of 98%, 95.1% and 91.5% respectively, for international patient-cases; and an AUROC, sensitivity, and specificity of 98.3%, 95.2%, 90% respectively for Mexican patient-cases. The results achieved on Mexican patient-cases outperformed the average performance of the 17 ophthalmologist participants of the study. We also find that the ARIA system can be useful as an assistive tool, as significant specificity improvements were observed in the experimental condition where participants were exposed to the answer of the ARIA system as a second opinion (93.3%), compared to the specificity of the condition where participants assessed the images independently (87.3%). Conclusions: These results demonstrate that both use cases of ARIA systems, independent and assistive, present a substantial opportunity for Latin American countries like Mexico towards an efficient expansion of monitoring capacity for the early detection of diabetes-related blindness.


2015 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Baha Sen ◽  
Kemal Akyol ◽  
Safak Bayir ◽  
Hilal Kaya

<p>Identifying the position of the optic disc on the retinal fundus image is a technique that is often used in medical diagnosis, treatment and monitoring processes. Determination of the intensity of the bright colors that belongs to the optic disc on a normal retinal image by the help of image processing algorithms is a fairly easy process. However, determining the optic disc on a retinal image including the diabetic retinopathy disease is a more difficult process. The reason for this difficulty is the existence of many regions that have the same light intensity in different parts of the retina. In this study, a new method for supplying the automatic determination of the optic disc in a recursive manner is proposed. By the help of OpenCV library, automatic determination process of the optic disc on the retinal fundus images including the diabetic retinopathy disease, has been implemented. Circular regions with maximum brightness values in the retinal images that were normalized and passed through the denoising process were determined and these regions were analyzed if they are optic disc or not. This process basically consists of two steps: In the first step, the possible optic disc candidate regions were determined recursively and in the second step, by the help of Gabor filter kernels, these regions were analyzed and it’s provided to decide if they are optic disc or not. This study is based on a dataset that has 89 images including diabetic retinopathy disease. Performance of this system is tested on these images and also on the images that the red, green, blue color channels and Contrast Limited Adaptive Histogram Equalization (CLAHE) retinas were obtained. Most accurate determination of the position of the optic disc is obtained with retinas, implemented process CLAHE, including the best success rate of 89.88%.</p><p> </p>Keywords: Optic disc, diabetic retinopathy, recursively, circular region, gabor filter kernels.


2019 ◽  
Vol 16 (1) ◽  
pp. 227-245 ◽  
Author(s):  
Maja Braovic ◽  
Darko Stipanicev ◽  
Ljiljana Seric

Automatic analysis of retinal fundus images is becoming increasingly present today, and diseases such as diabetic retinopathy and age-related macular degeneration are getting a higher chance of being discovered in the early stages of their development. In order to focus on discovering those diseases, researchers commonly preprocess retinal fundus images in order to detect the retinal landmarks - blood vessels, fovea and the optic disk. A large number of methods for the automatic detection of retinal blood vessels from retinal fundus images already exists, but many of them are using unnecessarily complicated approaches. In this paper we demonstrate that a reliable retinal blood vessel segmentation can be achieved with a cascade of very simple image processing methods. The proposed method puts higher emphasis on high specificity (i.e. high probability that the segmented pixels actually belong to retinal blood vessels and are not false positive detections) rather than on high sensitivity. The proposed method is based on heuristically determined parametric edge detection and shape analysis, and is evaluated on the publicly available DRIVE and STARE datasets on which it achieved the average accuracy of 96.33% and 96.10%, respectively.


Sign in / Sign up

Export Citation Format

Share Document