scholarly journals Exploring the Lack of Funding for Coral Reef Research and it’s Effects on Coral Reef Management and Conservation

2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Jenna Bushnell ◽  
Soo Park

Climate change is greatly harming coral reefs (Gibbs and West, 2019). It is important to research how to help these coral reefs build resilience against climate change but research programs are severely underfunded (Johnston et al. 2020). This paper explored how lack of funding prevents scientists from saving coral reefs and how scientists themselves can be affected. The goal of this paper was to bring to light the struggles faced in the midst of underfunding to feasibly gain support from politicians and government officials to promote funding for these programs. Through three virtual interviews with two scientists and one college professor, I gathered personal experiences from these participants on how coral reefs are being affected today, why research is necessary, and how lack of funding prevents the restoration of these reefs. With the use of a thematic analysis, I was able to recognize common themes between the interviews in order to conclude how lack of program funding prevents scientists from managing and restoring these coral reef ecosystems. The initial assumption for this paper was that coral reef research is underfunded because coral reefs are considered less important, however, the analysis of the data for this paper concluded that all research programs are underfunded. In essence, marine biology, in general, is underfunded as opposed to mainly research on coral reefs. As a result, scientists can be very limited in their abilities to conduct research.

2011 ◽  
Vol 17 ◽  
pp. 131-137
Author(s):  
Joanie A. Kleypas

Future environmental conditions for coral reefs are rapidly approaching states outside the ranges reefs have experienced for thousands to millions of years. Coral reef ecosystems, once thought to be robust to climate change because of their ability to bounce back after large scale physical impacts, have proven to be sensitive to both temperature rise and ocean acidification. Predicting what coral reefs will look like in the future is not an easy task, and one that is likely to be proven flawed. The discussion presented here is a starting point for those predictions, mostly from the perspective of reef building and ocean acidification.


2016 ◽  
Vol 13 (2) ◽  
pp. 239 ◽  
Author(s):  
Elisabeth Deschaseaux ◽  
Graham Jones ◽  
Hilton Swan

Environmental contextDimethylated sulfur compounds can exert multiple biological and environmental effects including climate regulation. Climate change and other anthropogenic factors are predicted to affect coral-reef ecosystems where these sulfur compounds are particularly abundant. We review the processes that regulate the production of dimethylated sulfur compounds in coral reefs and the potential consequences of environmental changes on their biogenic cycle in such fragile ecosystems under future climate change scenarios. AbstractDimethylsulfoniopropionate (DMSP) and its main breakdown products dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are biogenic species in the marine environment. In coral reefs, these dimethylated sulfur compounds (DSCs) have been reported at greater concentrations than in other marine ecosystems, which is most likely attributable to the extraordinary large biodiversity of coral reef communities (e.g. corals, macroalgae, coralline algae, invertebrates) and to the unique ability of zooxanthellate corals to synthesise DMSP from both the animal host and algal symbionts. Besides the various biological functions that have been attributed to DSCs, including thermoregulation, osmoregulation, chemoattraction and antioxidant response, DMS is suspected to take part in a climate feedback loop that could help counteract global warming. Nowadays, anthropogenic effects such as pollution, overfishing, increased sedimentation and global climate change are imminently threatening the health of coral reef communities around the world, with possible consequences on the natural cycle of DSCs within these ecosystems. This review provides insight into the biogeochemistry of DSCs in coral reefs and discusses the implications of projected changes in DSC production in these increasingly stressed ecosystems under future climate change scenarios. It shows that DSC dynamics will incontestably be affected in the near future, with possible feedback consequences on local climate.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 251
Author(s):  
Adi Zweifler (Zvifler) ◽  
Michael O’Leary ◽  
Kyle Morgan ◽  
Nicola K. Browne

Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Anggita Kartikasari ◽  
TODHI PRISTIANTO ◽  
RIZKI HANINTYO ◽  
EGHBERT ELVAN AMPOU ◽  
TEJA ARIEF WIBAWA ◽  
...  

Abstract. Kartikasari A, Pristianto T, Hanintyo R, Ampou EE, Wibawa TA, Borneo BB. 2021. Representative benthic habitat mapping on Lovina coral reefs in Northern Bali, Indonesia. Biodiversitas 22: 4766-4774. Satellite optical imagery datasets integrated with in situ measurements are widely used to derive the spatial distribution of various benthic habitats in coral reef ecosystems. In this study, an approach to estimate spatial coverage of those habitats based on observation derived from Sentinel-2 optical imagery and a field survey, is presented. This study focused on the Lovina coral reef ecosystem of Northern Bali, Indonesia to support deployment of artificial reefs within the Indonesian Coral Reef Garden (ICRG) programme. Three specific locations were explored: Temukus, Tukad Mungga, and Baktiseraga waters. Spatial benthic habitat coverages of these three waters was estimated based on supervised classification techniques using 10m bands of Sentinel-2 imagery and the medium scale approach (MSA) transect method of in situ measurement.The study indicates that total coverage of benthic habitat is 61.34 ha, 25.17 ha, and 27.88 ha for Temukus, Tukad Mungga, and Baktiseraga waters, respectively. The dominant benthic habitat of those three waters consists of sand, seagrass, coral, rubble, reef slope and intertidal zone. The coral reef coverage is 29.48 ha (48%) for Temukus covered by genus Acropora, Isopora, Porites, Montipora, Pocillopora. The coverage for Tukad Mungga is 8.69 ha (35%) covered by genus Acropora, Montipora, Favia, Psammocora, Porites, and the coverage for Baktiseraga is 11.37 ha (41%) covered by genus Montipora sp, Goniastrea, Pavona, Platygyra, Pocillopora, Porites, Acropora, Leptoseris, Acropora, Pocillopora, Fungia. The results are expected to be suitable as supporting data in restoring coral reef ecosystems in the northern part of Bali, especially in Buleleng District.


2017 ◽  
Vol 14 (6) ◽  
pp. 1739-1772 ◽  
Author(s):  
Kimberly K. Yates ◽  
David G. Zawada ◽  
Nathan A. Smiley ◽  
Ginger Tiling-Range

Abstract. Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from −0.09 to −0.8 m, corresponding to net volume losses ranging from 3.4  ×  106 to 80.5  ×  106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.


1998 ◽  
Vol 22 (2) ◽  
pp. 190-221 ◽  
Author(s):  
Heather Holden ◽  
Ellsworth LeDrew

According to the 1993 colloquium on the ‘Global status of coral reefs', our understanding of the global role of coral reefs is inadequate. To increase our understanding, an accurate large-scale mapping and monitoring programme is necessary. Historically, coastal zones have been mapped using traditional surveying tools such as topographic maps, nautical charts, existing aerial photographs and direct observations. Although less expensive than digital imagery, exclusive use of these traditional tools may not be practical for monitoring large or remote coral reef ecosystems accurately. Researchers are attempting to develop an adequate coral reef mapping system based on digital remote sensing, but are impeded by issues such as effects of the intervening water column and spectral distinction of bottom types. The two variables discussed, which will contribute to our understanding of the global role of coral reefs, are: 1) remote sensing of submerged coral reefs in general; and 2) remote sensing of coral bleaching in particular. A summary of radiative transfer theory is presented and case studies of attempts at mapping remotely the geographic extent and health of submerged ecosystems, as well as a discussion of the remote estimation of water depth and quality. Problems in the translation and delivery of information to the end user are presented, and possible solutions suggested.


2013 ◽  
Vol 26 (1) ◽  
pp. 153-171 ◽  
Author(s):  
Sophia Roosth

ArgumentWhat does “life” become at a moment when biological inquiry proceeds by manufacturing biological artifacts and systems? In this article, I juxtapose two radically different communities, synthetic biologists and Hyperbolic Crochet Coral Reef crafters (HCCR). Synthetic biology is a decade-old research initiative that seeks to merge biology with engineering and experimental research with manufacture. The HCCR is a distributed venture of three thousand craftspeople who cooperatively fabricate a series of yarn and plastic coral reefs to draw attention to the menace climate change poses to the Great Barrier and other reefs. Interpreting these two groups alongside one another, I suggest that for both, manufacturing biological artifacts advances their understandings of biology: in a rhetorical loop, they build new biological things in order to understand the things they are making. The resulting fabrications condense scientific and folk theories about “life” and also undo “life” as a coherent analytic object.


2016 ◽  
Author(s):  
Uri Obolski ◽  
Lilach Hadany ◽  
Avigdor Abelson

Counteracting the worldwide trend of coral reef degeneration is a major challenge for the scientific community. A crucial management approach to minimizing stress effects on healthy reefs and helping the recovery of disturbed reefs is reef protection. However, the current rapid decline of the world's reefs suggests that protection might be insufficient as a viable stand-alone management approach for some reefs. We thus suggest that the ecological restoration of coral reefs (CRR) should be considered as a valid component of coral reef management, in addition to protection, if the applied method is economically applicable and scalable. This theoretical study examines the potential applicability and outcomes of restocking grazers as a restoration tool for coral reef recovery – a tool that has not been applied so far in reef restoration projects. We studied the effect of restocking grazing fish as a restoration method using a mathematical model of degrading reefs, and analyzed the financial outcomes of the restocking intervention. The results suggest that applying this restoration method, in addition to protection, can facilitate reef recovery. Moreover, our analysis suggests that the restocking approach almost always becomes profitable within several years. Considering the relatively low cost of this restoration approach and the feasibility of mass production of herbivorous fish, we suggest that this approach should be considered and examined as an additional viable restoration tool for coral reefs.


2013 ◽  
Vol 1 (1) ◽  
pp. 34
Author(s):  
Patritia Napitupulu ◽  
Hanny Tioho ◽  
Agung Windarto

The information on population structure of Acanthaster planci in Bunaken National Park (BNP) is urgent to be presented in order to be considered in decision making especially on coral reef management in BNP. The objectives of  this study was to examine the  population structure of A. planci, represented by the diameter and weight, number of arms, while the density, distribution and types of coral predation by reef animals in the Southern part of Bunaken Island also observed. Data were collected at the three locations namely, front reef flat (FRF), middle reef flat (MRF) and back reef flat (BRF) with total coverage area of ​​100 x 50 meters. Sixty two individuals (41 at night and 21 at day time) were found with a body diameter ranging between 14 – 28 cm, whereas body weight ranged from 80 – 700 gr, with the number of arms between 9 until 17. The density of A. planci during day time was 0.0042 ind/m2, while the night time was 0.0082 ind/m2, moreover the animal is generally spread aggregated. The results of this study indicated that the population of A. planci in BNP was an adult population with density is still relatively normal, despite an alert sign for the sustainability of coral reef ecosystems in the BNP.


2021 ◽  
Author(s):  
◽  
Holly Bennett

<p>As atmospheric CO₂ concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. This PhD thesis explores the response of four abundant Great Barrier Reef species – the phototrophic Carteriospongia foliascens and Cymbastela coralliophila and the heterotrophic Stylissa flabelliformis and Rhopaloeides odorabile to OW and OA levels predicted for 2100, under two CO₂ Representative Concentration Pathways (RCPs). The overall aim of this research is to bridge gaps in our understanding of how these important coral reef organisms will respond to projected climate change, to begin to explore whether a sponge dominated state is a possible future trajectory for coral reefs.  To determine the tolerance of adult sponges to climate change, these four species were exposed to OW and OA in the Australian Institute of Marine Science’s (AIMS) National Sea Simulator (SeaSim) in a 3-month experimental study. The first data chapter explores the physiological responses of these sponges to OW and OA to gain a broad understanding of sponge holobiont survival and functioning under these conditions. In this chapter I also address the hypothesis that phototrophic and heterotrophic sponges will exhibit differential responses to climate change. In the second and third data chapters I explore the cellular lipid and fatty acid composition of sponges, and how these biochemical constituents vary with OW and OA. Lipids and fatty acids are not only vital energy stores, they form the major components of cell membranes, and the structure and composition of these biochemical constituents ultimately determines the integrity and physiological competency of a cell. Therefore through these analyses I aimed to determine how OW and OA affects the metabolic balance of sponges, and to understand mechanisms underpinning observed systemic sponge responses. Finally, to provide greater insight into the population level impacts of climate change on tropical sponges, in the last data chapter I explore the response of the phototrophic species Carteriospongia foliascens to OW/OA throughout its developmental stages.   I found that while sponges can generally tolerate climate change scenarios predicted under the RCP6.0 conditions for 2100 (30ºC/ pH 7.8), environmental projections for the end of this century under the RCP8.5 (31.5ºC/ pH 7.6) will have significant implications for their survival. Temperature effects were much stronger than OA effects for all species; however, phototrophic and heterotrophic species responded differently to OA. Elevated pCO₂ exacerbated temperature stress in heterotrophic sponges but somewhat ameliorated thermal stress in phototrophic species. Furthermore, sponges with siliceous spiculated skeletons resisted the RCP 8.5 conditions for longer than the aspiculate species. Biochemical analysis revealed that spiculated species also have greater cell membrane support features, which is likely to contribute to the observed stress tolerance. I also found that the additional energy available to phototrophic sponges under OA conditions may be used for investment into cell membrane support, providing protection against thermal stress. Finally, larval survival and settlement success of C. foliascens was unaffected by OW and OA treatments, and juvenile sponges exhibited greater tolerance than their adult counterparts, again with evidence that OA reduces OW stress for some of these life stages.   Based on the species studied here, this thesis confirms that sponges are better able to deal with OW and OA levels predicted for 2100 under RCP6.0, compared to many corals for which survival in a high CO₂ world requires OW to remain below 1.5°C. This suggests sponges may be future ‘winners’ on coral reefs under global climate change. However, if CO₂ atm concentrations reach levels predicted under RCP8.5, the prognosis for sponge survival by the end of this century changes as inter-species sponge tolerances to OW and OA differ. Under this projection it is likely we will also start to see a shift in sponge populations to those dominated by phototrophic sponges with siliceous spiculated skeletons. Overall, this thesis gives a holistic view of OW and OA impacts on tropical sponges and provides the basis from which to explore the potential for a sponge-coral regime shift in a high CO₂ world.</p>


Sign in / Sign up

Export Citation Format

Share Document