scholarly journals Comparative Analyses on Synthetic Membranes for Artificial Blood Feeding of Aedes aegypti using Digital Thermo Mosquito Blood Feeder (DITMOF)

2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Mohd Farihan Md Yatim ◽  
Aishah Hani Azil ◽  
Nazarudin Safian ◽  
Ahmad Firdaus Mohd Salleh ◽  
Mohd Khadri Shahar

The use of live animal to blood feeding mosquito colony is proven to be expensive and inconvenient. As an alternative, artificial feeding (AF) is used to rear mosquito colony. The use of synthetic membrane in AF provided a more convenient method as compared to natural membrane which require extensive preparation. In this study, three synthetic membranes were compared (Parafilm-M, Polytetrafluoroethylene tape or PTFE tape and collagen sausage casing) to blood feeding Aedes aegypti. The membranes were incorporated with our in-house developed device named as Digital Thermo Mosquito Blood Feeder (DITMOF) to heat cattle blood for mosquito feeding. Results showed that PTFE tape recorded the highest blood feeding rate (95.00% ± 1.67%) with significant mean difference (p <0.001) as compared to both Parafilm-M (72.00% ± 2.60%) and collagen sausage casing (71.50% ± 3.50%). However, there was no difference in term of fecundity for mosquito feed with all three membranes tested (p=0.292). In conclusion, PTFE tape should be considered as the preferred membrane to blood feeding Ae. aegypti. Furthermore, this artificial blood feeding system, DITMOF successfully feed Ae. aegypti conveniently and effectively, thus should be further tested to feed other mosquito species.

Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Luciana S. Dias ◽  
Jonatas C. Caldeira ◽  
Luiz G. S. R. Bauzer ◽  
José B. P. Lima

Potential pathogen transmission through hematophagy in Culicidae is a major public-health problem, and several studies have been performed to better understand this phenomenon. Research on these insects often requires the maintenance of colonies in the laboratory. Due to the hematophagic habits of these organisms, blood must be provided in order to guarantee the reproduction of individuals that constitute the colonies. Some species of mammals and birds are used as a direct blood source in many laboratories. Due to current bioethical parameters, the direct use of animals has been replaced by artificial blood feeding by using synthetic membranes to simulate animal skin. In this study, the efficiency of collagen and latex in the artificial feeding of mosquitoes of the Aedes aegypti and Culex quinquefasciatus species was evaluated and compared with Parafilm®, a standard membrane that is frequently used for this purpose. Important aspects of the feeding and reproduction of these insects were considered. For both species, latex showed the poorest performance. Collagen membrane performed well in most parameters, but was not as efficient as Parafilm® for fecundity in Aedes aegypti, and for the percentage of engorged females in Culex quinquefasciatus. We concluded that, although collagen is more resistant and easier to handle, Parafilm® was the most efficient among the three evaluated membranes for the artificial blood feeding of mosquitoes.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis , a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti . Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti . Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level. Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Thiago Nunes Pereira ◽  
Fabiano Duarte Carvalho ◽  
Lidia Henrique da Silva ◽  
Silvana Faria de Mendonça ◽  
Luciano Andrade Moreira

ABSTRACTMosquitoes such as Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of many pathogens that greatly affect humankind. The maintenance of these mosquitoes in laboratory permit different studies that can help understanding their biology, as well as the vector-pathogen interaction. In addition to sugar meals, the blood feeding is essential for maintenance of the reproductive cycle in several vectors. The main blood sources for many mosquito colonies are direct feeding on live animal or the use of human/animal blood through artificial feeders. However, this latter process has some disadvantages, as artificial feeders can be very laborious for assembly and decontamination. Based on these observations, a simplified technique for feeding and artificial infection was developed with cotton-pads soaked (CS) and blood or blood and viral supernatant to simulate an artificial infection. The efficiency of the CS technique was investigated through the number of mosquitoes fed/infected, when compared to their respective control group. The CS technique, with blood at room temperature, promoted a feeding rate of 61.4% for Ae. albopictus, 70.8% for Cx. quinquefasciatus and 17% for Ae. aegypti. The control group (Hemotec-feeding) presented 47.9%, 16.5% and 59.1% of feeding success, respectively. To improve the CS technique for Ae. aegypti mosquitoes, the procedure was then performed with blood at 38°C, which was possible to observe a feeding rate of 47.3%, in comparison to 53.2% for the control group (Hemotec). When using the CS technique for artificial infection with Mayaro virus, more than 80% of infection was observed for Ae. aegypti and 100% for Ae. albopictus. In the traditional infection technique (glass feeder), the infection rate was 90% (Ae. aegypti) and 96.6% (Ae. albopictus). For Cx. quinquefasciatus, the infection was positive only with the CS technique, resulting in 1 (5%) mosquito infected with Mayaro virus. Our results suggest that this simplified technique of low-cost feeding and easy assembly, offers good results for feeding (maintenance of colonies) and artificial infection of different species of mosquitoes.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared.Conclusions: In conclusion, this is the first study to the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


Parasitology ◽  
1992 ◽  
Vol 105 (2) ◽  
pp. 159-163 ◽  
Author(s):  
J.-N. Shieh ◽  
P. A. Rossignol

SUMMARYWe tested a theoretical model based on the physics of capillary flow and confirmed that anaemia accelerates blood intake in the yellow-fever mosquito, Aedes aegypti (L.). We also investigated the influence of anaemic blood on egg production of mosquitoes and found that it has a negative influence on fecundity. Based strictly on egg production and the physics of fluid intake, we propose that although anaemia associated with blood-borne parasites may be detrimental to mosquitoes that can engorge to repletion in one session, it may be beneficial to those interrupted before repletion because the greater quantity of the bloodmeal may compensate for its lower quality. Epidemiological consequences are discussed but require further inquiry.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 347 ◽  
Author(s):  
Irvin Forde Upshur ◽  
Elizabeth Annadel Bose ◽  
Cameron Hart ◽  
Chloé Lahondère

Aedes aegypti is an invasive mosquito species that is expected to expand its global distribution through climate change. As poikilotherms, mosquitoes are greatly affected by the temperature of the environment which can impact host-seeking, blood-feeding, and flight activity as well as survival and ability to transmit pathogens. However, an important aspect of mosquito biology on which the effect of temperature has not been investigated is water and sugar-feeding and how access to a sugar source might affect the insect’s activity and survival under different thermal conditions. To close this knowledge gap, we relied on actometer experiments to study the activity of both female and male Ae. aegypti at 20 °C, 25 °C, and 30 °C, providing either water or 10% sucrose to the insects. We then measured the total carbohydrate contents of alive mosquitoes using the anthrone protocol. Survival was assessed and compared between all groups. Results from this study will inform on the thermal biology of Ae. aegypti mosquitoes and how access to sugar affects their activity.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 755
Author(s):  
Silvana F. de Mendonça ◽  
Marcele N. Rocha ◽  
Flávia V. Ferreira ◽  
Thiago H. J. F Leite ◽  
Siad C. G. Amadou ◽  
...  

The emergence of new human viral pathogens and re-emergence of several diseases are of particular concern in the last decades. Oropouche orthobunyavirus (OROV) is an arbovirus endemic to South and Central America tropical regions, responsible to several epidemic events in the last decades. There is little information regarding the ability of OROV to be transmitted by urban/peri-urban mosquitoes, which has limited the predictability of the emergence of permanent urban transmission cycles. Here, we evaluated the ability of OROV to infect, replicate, and be transmitted by three anthropophilic and urban species of mosquitoes, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We show that OROV is able to infect and efficiently replicate when systemically injected in all three species tested, but not when orally ingested. Moreover, we find that, once OROV replication has occurred in the mosquito body, all three species were able to transmit the virus to immunocompromised mice during blood feeding. These data provide evidence that OROV is restricted by the midgut barrier of three major urban mosquito species, but, if this restriction is overcome, could be efficiently transmitted to vertebrate hosts. This poses a great risk for the emergence of permanent urban cycles and geographic expansion of OROV to other continents.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared.Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies is required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While not statistically significant, D. immitis infection alters bacterial diversity by reducing the bacterial species richness and abundance.Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


Sign in / Sign up

Export Citation Format

Share Document