scholarly journals HIGH PERFORMANCE FAULT SIMULATION FOR DIGITAL SYSTEMS

2014 ◽  
pp. 114-121
Author(s):  
Vladimir Hahanov ◽  
Gennadiy Krivoulya ◽  
Irina Hahanova ◽  
Olga Melnikova ◽  
Vladimir Obrizan

Fast backttraced deductive-parallel fault simulation method oriented on processing of complex digital devices containing hundreds of thousand equivalent gates is offered. Data structures and algorithms for method realization are described.

Author(s):  
A. Hahanova ◽  
V. Hahanov ◽  
S. Chumachenko ◽  
E. Litvinova ◽  
D. Rakhlis

Context. It is known that data structures are decisive for the creation of efficient parallel algorithms and high-performance computing devices. Therefore, the development of mathematically perfect and technologically simple data structures takes about 80 percent of the design time, when about 20 percent of time and material resources are spent on algorithms and their hardware-software coding. This lead to search for such primitives of data structures that will significantly simplify the parallel high-performance algorithms which are working on them. Models and methods for testing and simulation of digital systems are proposed, which containing certain advantages of quantum computing in terms of implementation of vector qubit data structures in technology of classical computational processes. Objective. The goal of the work is development of an innovative technology for qubit-vector synthesis and deductive analysis of tests for their verification based on vector data structures that greatly simplify algorithms that can be embedded as BIST components in digital systems on chips. Method. The deductive faults simulation is used to obtain analytical expressions focused on transporting fault lists through a functional or logical element based on the xor-operation, which serves as a measure of similarity-difference between a test, a function and faults which is specified in the same way in one of the formats − a table, graph, equation. A binary vector is proposed as the most technologically advanced primitive of data structures for setting logical functionality for the purpose of parallel synthesis and analysis of digital systems. The parallelism of solving combinatorial problems is a physical property of quantum computing, which in classical computing, for parallel simulation and faults diagnostics, is provided by unitary-coded data structures due to excess memory. Results. 1) A method of analytical synthesis of deductive logic for functional elements on the gate level and register transfer level has been developed. 2) A deductive processor for faults simulation based on transporting input lists or faults vectors to external outputs of digital circuits was proposed. 3) The qubit-vector form of logic setting and methods of qubit synthesis of deductive equations for faults simulation were described. 4) A qubit-vector method for the tests’ synthesis which is using derivatives calculated by vector coverage of logic has been developed. 5) Models and methods verification is performed on test examples in the software implementation of structures and algorithms. Conclusions. The scientific novelty lies in the new paradigm of the technology for the synthesis of deductive RTL logic based on metric test equation, which forms the. A vector form for structures description is introduced, which makes it possible to apply wellknown technologies for the synthesis and analysis of logical circuits tests to effectively solve the problems of graph structures testing and state machine models of digital devices. The practical significance is reflected in the examples of analytical synthesis of deductive logic for functional elements on gate level and register transfer level. A deductive processor for faults simulation which is focused on implementation as a BIST tool, which is used in online testing, simulation and fault diagnosis for digital systems on chips is proposed. A qubit-vector form of the digital systems description is proposed, which surpasses the existing methods of computing devices development in terms of the metric: manufacturability, compactness, speed and quality. A software application has been developed that implements the main testing, simulation and diagnostics services which are used in the educational process to study the advantages of qubit-vector data structures and algorithms. The computational complexity of synthesis processes and deductive formulas for logic and their usage in fault simulation are given.


2010 ◽  
Vol 40-41 ◽  
pp. 206-211
Author(s):  
Zhi Lin Zhu

One approach to achieving high performance in the DBMS in the critical application is to store the database in main memory rather than on disk. One can then design new data structures and algorithms oriented towards increasing the efficiency of the main memory database -MMDB. In this paper we present some results on index structures from an ongoing study of MMDB. We propose a new index structure, the T-tail Tree. We give the main algorithm of the T-tail Tree and the performance of these algorithms. Our results indicate that T-tail Tree provides good overall performance in main memory.


2021 ◽  
Vol 61 (SI) ◽  
pp. 122-134
Author(s):  
Tomáš Oberhuber ◽  
Jakub Klinkovský ◽  
Radek Fučík

We present Template Numerical Library (TNL, www.tnl-project.org) with native support of modern parallel architectures like multi–core CPUs and GPUs. The library offers an abstract layer for accessing these architectures via unified interface tailored for easy and fast development of high-performance algorithms and numerical solvers. The library is written in C++ and it benefits from template meta–programming techniques. In this paper, we present the most important data structures and algorithms in TNL together with scalability on multi–core CPUs and speed–up on GPUs supporting CUDA.


2017 ◽  
Author(s):  
Sarah Bastkowski ◽  
Daniel Mapleson ◽  
Andreas Spillner ◽  
Taoyang Wu ◽  
Monika Balvočiūtė ◽  
...  

ABSTRACTSummarySplit-networks are a generalization of phylogenetic trees that have proven to be a powerful tool in phylogenetics. Various ways have been developed for computing such networks, including split-decomposition, NeighborNet, QNet and FlatNJ. Some of these approaches are implemented in the user-friendly SplitsTree software package. However, to give the user the option to adjust and extend these approaches and to facilitate their integration into analysis pipelines, there is a need for robust, open-source implementations of associated data structures and algorithms. Here we present SPECTRE, a readily available, open-source library of data structures written in Java, that comes complete with new implementations of several pre-published algorithms and a basic interactive graphical interface for visualizing planar split networks. SPECTRE also supports the use of longer running algorithms by providing command line interfaces, which can be executed on servers or in High Performance Computing (HPC) environments.AvailabilityFull source code is available under the GPLv3 license at: https://github.com/maplesond/SPECTRESPECTRE’s core library is available from Maven Central at: https://mvnrepository.com/artifactuk.ac.uea.cmp.spectre/coreDocumentation is available at: http://spectre-suite-of-phylogenetic-tools-for-reticulate-evolution.readthedocs.io/en/latest/[email protected] Information (SI)Supplementary information is available at Bioinformatics online.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 241 ◽  
Author(s):  
Arthur Rosa ◽  
Matheus Silva ◽  
Marcos Campos ◽  
Renato Santana ◽  
Welbert Rodrigues ◽  
...  

In this work, a new real-time Simulation method is designed for nonlinear control techniques applied to power converters. We propose two different implementations: in the first one (Single Hardware in The Loop: SHIL), both model and control laws are inserted in the same Digital Signal Processor (DSP), and in the second approach (Double Hardware in The Loop: DHIL), the equations are loaded in different embedded systems. With this methodology, linear and nonlinear control techniques can be designed and compared in a quick and cheap real-time realization of the proposed systems, ideal for both students and engineers who are interested in learning and validating converters performance. The methodology can be applied to buck, boost, buck-boost, flyback, SEPIC and 3-phase AC-DC boost converters showing that the new and high performance embedded systems can evaluate distinct nonlinear controllers. The approach is done using matlab-simulink over commodity Texas Instruments Digital Signal Processors (TI-DSPs). The main purpose is to demonstrate the feasibility of proposed real-time implementations without using expensive HIL systems such as Opal-RT and Typhoon-HL.


Sign in / Sign up

Export Citation Format

Share Document