scholarly journals Statistical Process Design for Hybrid Layered Manufacturing

Author(s):  
Mukesh Dubey ◽  
Arvind Ojha ◽  
Jitendra Verma ◽  
Sanjay Goyal ◽  
Ajay Bangar

The welding parameters such as current, voltage, arc length, wire feed rates, wire stick-out distance etc will influence on the deposited weld bead geometry. Statistical design of experiments using orthogonal arrays and signal-to-noise (S/N) ratios are performed to constitute the core of the robust design procedure. Taguchi Methodology was employed with minimum number of trails as compared with classical statistical experiments. This study systematically revels the complex cause-effect relationships between design parameters and performance. Thus an optimized weld bead width and heights are formulated for the exterior contour weld path deposition and for the interior layer metal path deposition respectively.

Bead geometry plays very important role in predicting the quality of weld as cooling rate of the weld depends on the height and bead width, also bead geometry determines it’s residual stresses and distortion. Weld bead geometries are outcomes of several welding parameters taken into consideration. If arc travel is high and arc power is kept low it will produce very low fusion. If electrode feed rate is kept higher width is also found to be on higher side which makes bead tto flat. Also, the parameters like current, voltage, arc travel rate, polarity affects weld bead geometry. Hence, this paper uses techniques like ANN, linear regression and curvilinear regression for predictions of weld bead geometry and their relations with different weld parameters. I. INTRODU


Author(s):  
R. Sudhakaran ◽  
P. S. Siva Sakthivel

The quality of the weld joint is highly influenced by the welding parameters. Hence accurate prediction of weld bead parameters is highly essential to achieve good quality joint. This paper presents development of neural network models for predicting bead parameters such as depth of penetration, bead width and depth to width ratio for AISI 202 grade stainless steel GTAW plates. The use of this series in certain applications ended in failure of the product as there is no adequate level of user knowledge. Hence it becomes imperative to go for detailed investigations on this grade before recommending it for any application. The process parameters chosen for the study are welding current, welding speed, gas flow rate and welding gun angle. The chosen output parameters were depth of penetration, bead width and depth to width ratio. The experiments were conducted based on design of experiments using fractional factorial with 125 runs. Using the experimental data feed forward back propagation neural net work models were developed and trained using Levenberg Marquardt algorithm. The training, learning, performance and transfer functions used are trainlm, learningdm, MSE and tansig respectively. Four networks were developed with four neurons for the input layer, 3 neurons for the output layer and different nodes for the hidden layer. They are 4 – 2 – 3, 4 – 4 – 3, 4 – 8 – 3 and 4 – 9 – 3. It was found that ANN model based on network 4 – 9 – 3 predicted the bead dimensions more accurately than the other networks. The prediction of weld bead geometry parameters helps in identifying the recommended combination of process parameters to achieve good quality joint.


Bead geometry plays very important role in predicting the quality of weld as cooling rate of the weld depends on the height and bead width, also bead geometry determines it’s residual stresses and distortion. Weld bead geometries are outcomes of several welding parameters taken into consideration. If arc travel is high and arc power is kept low it will produce very low fusion. If electrode feed rate is kept higher width is also found to be on higher side which makes bead tto flat. Also, the parameters like current, voltage, arc travel rate, polarity affects weld bead geometry. Hence, this paper is a review of different experimentations and modeling techniques regarding predictions of weld bead geometry and their relations with different weld parameters.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


2017 ◽  
Vol 867 ◽  
pp. 88-96
Author(s):  
S.M. Ravikumar ◽  
P. Vijian

Welding input process parameters are playing a very significant role in determining the weld bead quality. The quality of the joint can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Experiments were conducted to develop models, using a three factor, five level factorial design for 304 stainless steel as base plate with ER 308L filler wire of 1.6 mm diameter. The purpose of this study is to develop the mathematical model and compare the observed output values with predicted output values. Welding current, welding speed and nozzle to plate distance were chosen as input parameters, while depth of penetration, weld bead width, reinforcement and dilution as output parameters. The models developed have been checked for their adequacy. Confirmation experiments were also conducted and the results show that the models developed can predict the bead geometries and dilution with reasonable accuracy. The direct and interaction effect of the process parameters on bead geometry are presented in graphical form.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1659
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Mahmoud Moradi ◽  
Milad Aghaee Attar ◽  
Seyed Alireza Rasouli ◽  
Majid Ghoreishi ◽  
...  

This study involves the validating of thermal analysis during TIG Arc welding of 1.4418 steel using finite element analyses (FEA) with experimental approaches. 3D heat transfer simulation of 1.4418 stainless steel TIG arc welding is implemented using ABAQUS software (6.14, ABAQUS Inc., Johnston, RI, USA), based on non-uniform Goldak’s Gaussian heat flux distribution, using additional DFLUX subroutine written in the FORTRAN (Formula Translation). The influences of the arc current and welding speed on the heat flux density, weld bead geometry, and temperature distribution at the transverse direction are analyzed by response surface methodology (RSM). Validating numerical simulation with experimental dimensions of weld bead geometry consists of width and depth of penetration with an average of 10% deviation has been performed. Results reveal that the suggested numerical model would be appropriate for the TIG arc welding process. According to the results, as the welding speed increases, the residence time of arc shortens correspondingly, bead width and depth of penetration decrease subsequently, whilst simultaneously, the current has the reverse effect. Finally, multi-objective optimization of the process is applied by Derringer’s desirability technique to achieve the proper weld. The optimum condition is obtained with 2.7 mm/s scanning speed and 120 A current to achieve full penetration weld with minimum fusion zone (FZ) and heat-affected zone (HAZ) width.


2014 ◽  
Vol 554 ◽  
pp. 386-390
Author(s):  
C.W. Mohd Noor ◽  
Manuhutu Ferry ◽  
W.B. Wan Nik

The prediction of the optimal weld bead width is an important aspect in shielded metal arc welding (SMAW) process as it is related to the strength of the weld. This paper focuses on investigation of the development of the simple and accurate model for prediction of weld bead geometry. The experiment used welding current, arc length, welding speed, welding gap and electrode diameter as input parameters. While output parameters are bead width, depth of penetration and weld reinforcement. A number of 33 mild steel plate specimens had undergone the SMAW welding process. The experimental data was used to develop mathematical models using SPSS software. The actual and predicted values of the weld bead geometry are compared. The proposed models shows positive correlation to the real process.


2014 ◽  
Vol 660 ◽  
pp. 342-346
Author(s):  
Nik Mohd Baihaki Abd Rahman ◽  
Abdul Ghalib Tham ◽  
Sunhaji Kiyai Abas ◽  
Razali Hassan ◽  
Yupiter H.P. Manurung ◽  
...  

The robot can perform Flux Cored Arc Welding (FCAW) at high productivity and consistency in quality. The quality of the welding depend on the selection of welding parameter and deposition geometry. These input has to be known before the start of production, generally the welding operator will obtain the information through experimental trial and error. This project planned to develop a tool that can advise the choice of welding parameter that produce quality weld bead with desired geometry. This research focused on the correlation of heat input on weld bead geometry and the range of welding parameter for fillet design welded in downhill direction (3F). From the correlation trend-line equations and welding parameter population boundary, the weld bead geometry and welding parameter for quality deposit are predicted. Consequently two calculators were developed to display the values digitally. The deviation of predicted bead geometry from actual welding is less than 1mm. Mean Absolute Deviation (MAD) is less than 0.4mm, accuracy is good. A wide range of welding parameters can be generated for quality welding at desired bead geometry.


2020 ◽  
Vol 3 (1) ◽  
pp. 282-290
Author(s):  
Celalettin Yuce

As a higher weight leads to increased fuel consumption for the automobile industry, the body in white must be lighter to compensate for the weight of additional components. Therefore, tailored blanks are used, which reinforce the body in white only in areas where a higher strength or stiffness is necessary. The applicability of laser welding processes with its numerous advantages, such as low heat input and production efficiency, is often limited when joining imperfect edges steel sheets due to small gap bridging ability. To overcome this limit, recent developments in the laser industry have introduced a novel method to wider the applications of lasers through the utilization of fast beam oscillation techniques, also known as laser beam wobbling. In this study, the effects of the four different amplitudes (0.5 mm, 1 mm, 1.5 mm and 2 mm) of circular laser beam oscillation patterns on the weld bead geometry and microhardness distribution were investigated. The results revealed that the weld bead width increased with the increase of wobble amplitude. Moreover, the tensile strengths of the welded blanks were higher than the AHSS base metal for all amplitude levels.


Sign in / Sign up

Export Citation Format

Share Document