scholarly journals Transient Stability Enhancement of Multimachine Power System Using Robust and Novel Controller Based CSC-STATCOM

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sandeep Gupta ◽  
Ramesh Kumar Tripathi

A current source converter (CSC) based static synchronous compensator (STATCOM) is a shunt flexible AC transmission system (FACTS) device, which has a vital role as a stability support for small and large transient instability in an interconnected power network. This paper investigates the impact of a novel and robust pole-shifting controller for CSC-STATCOM to improve the transient stability of the multimachine power system. The proposed algorithm utilizes CSC based STATCOM to supply reactive power to the test system to maintain the transient stability in the event of severe contingency. Firstly, modeling and pole-shifting controller design for CSC based STATCOM are stated. After that, we show the impact of the proposed method in the multimachine power system with different disturbances. Here, applicability of the proposed scheme is demonstrated through simulation in MATLAB and the simulation results show an improvement in the transient stability of multimachine power system with CSC-STATCOM. Also clearly shown, the robustness and effectiveness of CSC-STATCOM are better rather than other shunt FACTS devices (SVC and VSC-STATCOM) by comparing the results in this paper.

2020 ◽  
Vol 40 (3) ◽  
pp. 21-31
Author(s):  
Mohamed Nassim Kraimia ◽  
Mohamed Boudour

In this paper a study of the impact of the harmonics generated by a static Var compensator (SVC) is presented. The SVC is modeled, in the harmonic domain, as a coupled current source by using the complex Fourier transforms. Then, this model is converted to polar form to be integrated into the harmonic power flow program. This approach has been carried out on the IEEE 14 bus test power system, in order to show its effectiveness in evaluating the impact of harmonics, injected by the shunt compensating devices, and its interaction with the AC transmission system, in meshed power networks. Since the SVC consists of a thyristorcontrolled reactor (TCR) and a fixed capacitor, the harmonic currents are functions of the TCR thyristors firing angles. The variation of the total voltage harmonic distortion as function of firing angle changes and location of nonlinear loads is clearly presented and discussed.


2021 ◽  
Vol 28 (1) ◽  
pp. 1-12
Author(s):  
Maha Al-Flaiyeh ◽  
Nagham Aziz

The research strategy focuses on the effect of connecting a STATCOM to mend critical-clearing-time (CCT) for the studied system and its transient stability. This paper targets to connect STATCOM in two situations, grouped and distributed. The first situation connects STATCOM at one placement with 100 MVAR reactive power while the second situation connects two STATCOMs at two different placements with the value 50 MVAR for each one and 60 MVAR,40 MVAR in another case. It has been found through this research that when distributing the necessary compensation capacity to more than one static synchronous compensator better than from combined them in one compensator in improving the CCT. It used MATLAB / ver.2017 for simulation of our studied system (IEEE-9 nodes).


Author(s):  
Shraddha Udgir ◽  
Sarika Varshney ◽  
Laxmi Srivastava

In emerging electric power systems, increased transactions often lead to the situations where the system no longer remains in secure operating region. The flexible AC transmission system (FACTS) controllers can play a vital role in the power system security enhancement. However, due to high capital investment, it is necessary to place these controllers optimally in a power system. FACTS devices can regulate the active and reactive power control as well as adaptive to voltage-magnitude control simultaneously because of their flexibility and fast control characteristics. Placement of these devices at optimal location can lead to control in line flow and maintain bus voltages in desired level and so improve voltage profile and stability margins. This paper proposes a systematic method for finding optimal location of SVC to improve voltage profile of a power system. A contingency analysis to determine the critical outages with respect to voltage security is also examined in order to evaluate the effect of SVC on the location analysis. Effectiveness of the proposed method is demonstrated on IEEE 30-bus test system.


2014 ◽  
Vol 25 (4) ◽  
pp. 128-135 ◽  
Author(s):  
Othman Hasnaoui ◽  
Mehdi Allagui

The main causes of wind farms disconnection from the grid is the three-phase grid faults at the point common coupling (PCC) e.g. the voltage dip. The use of a Static Synchronous Compensator (STATCOM) which is from the family of Flexible AC Transmission System (FACTS) devices can be used effectively in a wind park based on FSIG to provide transient voltage and to improve wind system stability. Due to the asynchronous operation nature, system instability of wind farms based on FSIG (Fixed Speed Induction Generator) is largely caused by the reactive power absorption by FSIG because due to the large rotor slip during grid fault. STATCOM contributes to control the grid voltage at PCC and maintain wind farm connection to the grid during some severe conditions of grid faults and used for power flow control and for damping power system oscillations. The evaluation of this control strategy using (STATCOM) is investigated in terms of regulation reactive power and transient stability of the wind farm during grid disturbances.


2013 ◽  
Vol 339 ◽  
pp. 561-564 ◽  
Author(s):  
Xue Song Zhou ◽  
Chun Ji ◽  
You Jie Ma

At present, the power system plays a vital role in China's national economy, therefore, power indicator problem of the system attracting much attention, reactive power and voltage as one of the light elements give enough weight, the stability of the system is not to be neglected, static synchronous compensator (STATCOM) is a member that has high precision control, fast response time, dynamic reactive compensation ability in flexible exchange transmission system devices. At the same time, it has become a hot topic in the study of reactive power compensation devices and a growing number of widely applied to power system.


2017 ◽  
Author(s):  
◽  
Adebiyi Abayomi Aduragba

Voltage instability and increased power loss on transmission lines are major challenges in power transmission due to ever increasing load growth. This work investigates the effect of Static Synchronous Compensator (STATCOM) to mitigate power losses and enhance the voltage stability of a transmission system. STATCOM, a shunt-connected power electronic device, operate as a Voltage Source Converter (VSC) to improve power transfer capacity of transmission lines by injecting a set of three-phase balanced sinusoidal current with controllable magnitude and phase angle into the transmission lines to regulate the line voltage and compensate for reactive power at the Point of Common Coupling (PCC). To validate the capacity of STATCOM in this light, a modified model of IEEE 14 bus test system was simulated using DIgSILENT PowerFactory v15. Four different load profiles were included by increasing the base load in a step of 10%. In each case, power flow was run with and without STATCOM incorporated in the network with a view to determine the impact of STATCOM on bus voltage and transmission line losses. The simulation results are obtained were recorded and analyzed. It is noted that there was sufficient improvement in the new voltage profile obtained for the weak buses of the system, the active and reactive power losses were mitigated by 17.73% and 24.80% respectively when STATCOM was incorporated at normal load. The results showed that STATCOM could give quick voltage support to reduce the likelihood of voltage collapse and mitigate power losses along the transmission lines. Reduction of reactive power losses along the lines is higher than the active power losses resulting in the improvement of the voltage profile as the device is connected to the system.


10.29007/zktd ◽  
2018 ◽  
Author(s):  
David Parmar ◽  
Dr. Bhinal Mehta

With the increase in the penetration of photo-voltaic (PV) generation in the power system it is utmost important to analyze the impact and issues of PV generation on the interconnected power system. As the output of PV is not constant its influence on the power system stability needs to be considered and it is evident from the grid codes of most of the countries. In this paper two different model of solar photovoltaic generation suitable for small signal stability analysis are presented and its behavior is investigated considering the IEEE 14-bus test system. The research review the impact of solar power on the interconnected power system with a high penetration of PV generation by the control of active and reactive power output. Based on constant reactive power and constant voltage magnitude models, the effect of voltage and angle stability of grid connected PV systems are studied and discussed. The eigenvalue analysis is carried out for the test system without any PV penetration and with different PV penetration levels and the results are compared using the power system analysis toolbox on MATLAB platform. The most influencing critical modes are identified and their behavior with increase in PV penetration is demonstrated.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Shereefdeen Oladapo Sanni ◽  
Josiah Haruna ◽  
Boyi Jimoh ◽  
Usman Aliyu

This study presents the transient stability enhancement capability of Unified power flow controller (UPFC) as an effective Flexible AC Transmission System (FACTS) device in a multi-machine power system. The test system was a reduced Nigerian 330kV power system and the focus was on the effect of disturbances on the largest generating unit (Egbin) in the system. The analysis was conducted by simulating a 3-phase fault at two locations; on the terminal of the largest generator unit at Egbin bus and the bus with the largest load at Ikeja–west. The response of the system in both cases was compared with and without the device in operation. Simulations were carried out using the Power System Simulation for Engineering (PSS/E) software. Results showed that, with the UPFC in the network, system transient stability was enhanced considering that critical clearing time of the system was increased from 380ms to 590ms when the fault was at Egbin generator terminal and from 470ms to 510ms following the fault at Ikeja-west. In addition, the device was able to damp power oscillations resulting from the disturbance created by the faults.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ramesh Devarapalli ◽  
Biplab Bhattacharyya

AbstractPower system oscillations are the primary threat to the stability of a modern power system which is interconnected and operates near to their transient and steady-state stability limits. Power system stabilizer (PSS) is the traditional controller to damp such oscillations, and flexible AC transmission system (FACTS) devices are advised for the improved damping performance. This paper suggests a technique for controller parameters tuning of PSS and a shunt connected FACTS device to be operated in coordination. A static synchronous compensator (STATCOM) connected in a two-machine system is considered as a test power system for the system studies. A recent meta-heuristic algorithm, Multi-Verse optimizer (MVO) has been suggested and compared with the other state-of-the-art algorithms. Improvement in system damping has been achieved by minimizing the oscillating nature of the system states by framing the objective function as a function of damping ratio and location of poles of the system. The Phillips-Heffron model of the test system has been designed by considering the system dynamics. The coordinated system behavior under the perturbation in system parameters has been observed satisfactory with the tuned controller parameters obtained from the suggested algorithm.


Sign in / Sign up

Export Citation Format

Share Document