scholarly journals Mathematical Formulation of Multi-Area Unit Commitment Problem

Author(s):  
Vikram Kumar Kamboj ◽  
S.K. Bath

Multi-Area Unit Commitment Problem is to determine the optimal commitment strategy for generating units located in multiple areas that are interconnected via tie–lines and joint operation of generation resources can result in significant operational cost savings. This research paper presents the mathematical formulation for Multi-Area Unit Commitment Problem along with tie-line concept of interconnected power system. The objective of this paper is to describe the multi-area unit commitment problem, mathematical formulation and tie line concept along with transmission interconnections constrains. Also, standard IEEE data for 26-Generating units of four area system along with 24-hours load demand is given as appendix, which can be used as quick reference by other researchers.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8014
Author(s):  
Aml Sayed ◽  
Mohamed Ebeed ◽  
Ziad M. Ali ◽  
Adel Bedair Abdel-Rahman ◽  
Mahrous Ahmed ◽  
...  

Unit commitment problem (UCP) is classified as a mixed-integer, large combinatorial, high-dimensional and nonlinear optimization problem. This paper suggests solving the UCP under deterministic and stochastic load demand using a hybrid technique that includes the modified particle swarm optimization (MPSO) along with equilibrium optimizer (EO), termed as MPSO-EO. The proposed approach is tested firstly on 15 benchmark test functions, and then it is implemented to solve the UCP under two test systems. The results are basically compared to that of standard EO and previously applied optimization techniques in solving the UCP. In test system 1, the load demand is deterministic. The proposed technique is in the best three solutions for the 10-unit system with cost savings of 309.95 USD over standard EO and for the 20-unit system it shows the best results over all algorithms in comparison with cost savings of 1951.5 USD over standard EO. In test system 2, the load demand is considered stochastic, and only the 10-unit system is studied. The proposed technique outperforms the standard EO with cost savings of 40.93 USD. The simulation results demonstrate that MPSO-EO has fairly good performance for solving the UCP with significant total operating cost savings compared to standard EO compared with other reported techniques.


2014 ◽  
Vol 3 (4) ◽  
pp. 34-54 ◽  
Author(s):  
Vikram Kumar Kamboj ◽  
S.K. Bath

Biogeography Based Optimization (BBO) algorithm is a population-based algorithm based on biogeography concept, which uses the idea of the migration strategy of animals or other spices for solving optimization problems. Biogeography Based Optimization algorithm has a simple procedure to find the optimal solution for the non-smooth and non-convex problems through the steps of migration and mutation. This research paper presents the solution to Economic Load Dispatch Problem for IEEE 3, 4, 6 and 10-unit generating model using Biogeography Based Optimization algorithm. It also presents the mathematical formulation of scalar and multi-objective unit commitment problem, which is a further extension of economic load dispatch problem.


2020 ◽  
Vol 184 ◽  
pp. 01070
Author(s):  
Ayani Nandi ◽  
Vikram Kumar Kamboj

Daily load demand for industrial, residential and commercial sectors are changing day by day. Also, inclusion of e-mobility has totally effected the operations of realistic power sector. Hence, to meet this time varying load demand with minimum production cost is very challenging. The proposed research work focuses on the mathematical formulation of profit based unit commitment problem of realistic power system considering the impact of battery electric vehicles, hybrid electric vehicles and plug in electric vehicles and its solution using Intensify Harris Hawks Optimizer (IHHO). The coordination of plants with each other is named as Unit commitment of plants in which the most economical patterns of the generating station is taken so as to gain low production cost with higher reliability. But with the increase in industrialization has affected the environment badly so to maintain the balance between the generation and environment a new thinking of generating low cost power with high reliability by causing less harm to environment i.e. less emission of flue gases is adopted by considering renewable energy sources.


Author(s):  
Vikram Kumar Kamboj ◽  
S. K. Bath

Biogeography Based Optimization (BBO) algorithm is a population-based algorithm based on biogeography concept, which uses the idea of the migration strategy of animals or other spices for solving optimization problems. Biogeography Based Optimization algorithm has a simple procedure to find the optimal solution for the non-smooth and non-convex problems through the steps of migration and mutation. This research chapter presents the solution to Economic Load Dispatch Problem for IEEE 3, 4, 6 and 10-unit generating model using Biogeography Based Optimization algorithm. It also presents the mathematical formulation of scalar and multi-objective unit commitment problem, which is a further extension of economic load dispatch problem.


Author(s):  
Idriss Abdou ◽  
Mohamed Tkiouat

Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties.


Sign in / Sign up

Export Citation Format

Share Document