scholarly journals Comparing the Potentiality of Propane, Propanol and Octane Fuel Using in SI Engine Based on Energy-Exergy Analysis

Author(s):  
Md Mizanuzzaman Mizan

From the beginning of IC engine era, it is trying to improve the performance and efficiency of internal combustion engine. In this study, numerically analysis on combustion of Propane, Propanol and Octane in SI engine have been done thoroughly and presented to assess the potentiality and highlighted the comparison. For this analysis thermodynamic engine cycle model is developed for numerical analysis. Mathematical models considering fundamental equation and empirical relation are implemented in a single cylinder 4 stroke spark ignition engine (system) with the help of FORTRAN 95 to find out heat losses, friction losses, output parameter etc.  Single cylinder four-stroke spark-ignition (SI) engine is considered as system. In this study, different working parameters like 8 and 12 compression ratios with three different rpm 2000, 4000 & 6000 are considered for simulation. This study shows the different comparisons of energy-exergy content (%), as example of exhaust gas 35.08 & 17.82, 37.02 & 19.22, 37.79 & 19.79 for Octane (at compression ratio 8 and 2000, 4000, 6000 rpm) etc., which explains the potentiality content and the potentiality losses in different process like combustion, mixing of gases etc. It also shows for the fuel propane and propanol in similar way with changing different operating conditions. Maximum inside cylinder temperature, 1st law and 2nd law efficiencies were determined for the fuels with respect to different compression ratio and engine speed.

2013 ◽  
Vol 1 (1) ◽  
pp. 81-90
Author(s):  
Adel Mahmood Salih ◽  
Hussain Ali Ahmed

       In this research, a scientific study has been proceeded to illustrate the impact of adding methanol – alcohol of 10% and 20% by volume of gasoline without lead with (81) octane number on performance and noise emitted from single cylinder - internal combustion engine work by ignition with compression ratio of (9.5:1), where the previous studies that have been proceeded were on compression ratio ranged about (5:1 – 8:1). Consequences showed that; the addition of 10% methanol can increase the break power about (22%) while the addition of 20% methanol reduces the break power about (8%) after a comparison with the performance of engine without addition. For the fuel consumption, the study showed that the rate of consumption increases (1.8%), (30%) with addition of 10% and 20% methanol consecutively after a comparison with the performance of engine without addition. Also, the consequences showed that reduing of the OASPL about (3.3%) with use the addition of 10% methanol while addition of 20% methanol causes increasing in OASPL about (1.2%) after a comparison with the performance of engine without addition. Also the experiments have been preceded with three stages to illustrate the impact of the sonic isolator (crok isolator 2.5cm thickness, and glass isolator 4mm thickness) a space of air 2.5 cm thickness separat between them. The first stage included proceede the experimente without isolator, second stage by using crok isolator and the third by using two isolators (crok &glass), the consequences was showed reducing of OASPL about 5dB with crok iso. and 8 dB with using two isolators .


Author(s):  
G. Anand ◽  
M. R. Ravi ◽  
J. P. Subrahmanyam

The basic intent of the present work is to evaluate the potential of using alternative gaseous fuels like compressed natural gas (CNG) and H2/CNG as a spark ignition (SI) engine (lean burn engines) fuel. Computer modeling of internal combustion engine is useful in understanding the complex processes that occur in the combustion chamber. This research deals with quasi-dimensional, two-zone thermodynamic simulation of four-stroke SI engine fueled with CNG and H2/CNG. The fraction of hydrogen in the H2/CNG blend, for simulation was varied from 0–60% by volume. The developed computer model has been used for the prediction of the combustion and emission characteristics of H2/CNG blended fuel in SI engines, which includes the power, thermal efficiency, cylinder pressure-crank angle history, exhaust emissions (NOx and CO), fuel consumption, combustion duration, ignition delay, etc. Predicted results indicate that the presence of hydrogen in H2/CNG blend can improve combustion duration as it has a higher flame speed. There are increases in oxides of nitrogen emissions, but decrease in carbon monoxide and hydrocarbon emissions, when comparing H2/CNG blended fuel to neat CNG. The validity of the model has been carried out by comparing the computed results with experimental data obtained under same engine setup and operating conditions. The results obtained from the theoretical model when compared with those from experimental ones show a good agreement. Also, the effects of the many operating parameters such as equivalence ratio, engine speed, and spark timing have been studied.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. The performance data reported often tend not to display consistent agreement between the various investigators mainly because of the wide differences in engine type, size, operating conditions used and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. The paper employs a quasi-dimensional two-zone model for the operation of S.I. engines when fuelled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fuelled engine applications (Shrestha and Karim 1999(a) and 1999(b)) was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency and operational limits were investigated. The results of this predictive approach were shown to validate well against corresponding experimental results of our own and those of others, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature and spark timing are presented and discussed. Some guidelines for superior knock free-operation of engines on hydrogen are made also.


2019 ◽  
Vol 179 (4) ◽  
pp. 86-92
Author(s):  
Mieczysław DZIUBIŃSKI ◽  
Ewa SIEMIONEK ◽  
Artur DROZD ◽  
Michał ŚCIRKA ◽  
Adam KISZCZAK ◽  
...  

The article discusses the impact of ignition system damage on the emission of toxic subcategories in a spark-ignition internal combustion engine. The aim of the work was to develop an analytical model of ignition system diagnostics, test performance and comparative analysis of the results of simulations and experiments. The model developed allows to analyse the basic parameters of the ignition system affecting the content of toxic substances in the exhaust. Experimental tests were carried out using the MAHA MGT5 exhaust gas analyser for four different combustion engines fueled with petrol at various operating conditions. During the tests, the content of toxic substances in the exhaust gas of a properly working engine and the engine working with damage to the ignition system were registered. The tests will be used to assess the impact of the damage of the spark-ignition engine on the emission of individual components of toxic fumes.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aan Yudianto ◽  
Peixuan Li

The proper design of the flywheel undeniably determines in tuning the engine to confirm the better output engine performance. The aim of this study is to mathematically investigate the effect of various values of the compression ratio on some essential parameters to determine the appropriate value for the flywheel dimension. A numerical calculation approach was proposed to eventually determine the dimension of the engine flywheel on a five-cylinder four-stroke Spark Ignition (SI) engine. The various compression ratios of 8.5, 9, 9.5, 10, 10.5, and 11 were selected to perform the calculations. The effects of compression ratio on effective pressure, indicated mean effective pressure (IMEP), dynamic irregularity value of the crankshaft, and the diameter of the flywheel was clearly investigated. The study found that 2.5 increment value of the compression ratio significantly increases the effective pressure of about 41.53% on the starting of the expansion stroke. While at the end of the compression stroke, the rise of effective pressure is about 76.67%, and the changes in dynamic irregularity merely increase by about 1.79%. The same trend applies to the flywheel diameter and width, which increases 2.08% for both.


2004 ◽  
Vol 128 (1) ◽  
pp. 230-236 ◽  
Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever-increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. However, the performance data reported often tend not to display consistent agreement between the various investigators, mainly because of the wide differences in engine type, size, operating conditions used, and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. In the paper we employ a quasidimensional two-zone model for the operation of S.I. engines when fueled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fueled engine applications was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated. The results of this predictive approach were shown to validate well against the corresponding experimental results, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature, and spark timing are presented and discussed. Some guidelines for superior knock-free operation of engines on hydrogen are also made.


Author(s):  
Özgür Solmaz ◽  
Habib Gürbüz ◽  
Mevlüt Karacor

Abstract In first stage, a machine learning (ML) was performed to predict in-cylinder pressure using both fuzzy logic (FL) and artificial neural networks (ANN) depending on the results of experimental studies in a spark ignition (SI) engine. In the ML phase, the experimental in-cylinder pressure data of SI engine was used. SI engine was operated at stoichiometric air–fuel mixture (φ = 1.0) at 1200, 1400, and 1600 rpm engine speeds. Six different ignition timings, ranging from 15 to 45 °CA, were used for each engine speed. Correlations (R2) between data from in-cylinder pressure obtained via FL and ANN models and data form experimental in-cylinder pressure were determined. R2 values over 0.995 were obtained at an ML stage of ANN model for all test conditions of the engine. However, R2 values were remained between range of 0.820–0.949 with the FL model for different engine speeds and ignition timings. In the second stage, in-cylinder pressure prediction was performed by using an ANN model for engine operating conditions where no experimental results were obtained. Furthermore, indicated mean effective pressure (IMEP) values were calculated by predicting in-cylinder pressure data for different engine operation conditions, and then compared with experimental IMEP values. The results show that the in-cylinder pressure and IMEP results estimated with the trained ANN model are fairly close to the experimental results. Moreover, it was found that using the trained ANN model, the ignition timing corresponding to the maximum brake torque (MBT) used in the engine management systems and engine studies could be determined with high accuracy.


Author(s):  
G. Anand ◽  
R. Balamurugan

The present contribution describes the potential of using gaseous fuels like Hythane (CNG/H2 mixtures) as a spark ignition (SI) engine fuel. Genetic Algorithm (GA) is used to optimize the design and operational parameters of a CNG/H2 fueled spark ignition engine for maximizing the engine efficiency subjected to NOx emission constraint. This research deals with quasi-dimensional, two-zone thermodynamic simulation of four-stroke SI engine fueled with CNG/H2 blended fuel for the prediction of the combustion and emission characteristics. The validity of the model has been carried out by comparing the computed results with experimental data obtained under same engine setup and operating conditions. A wide range of engine parameters were optimized using a simple GA regarding both engine efficiency and NOx emissions. The five parameters chosen were compression ratio, engine speed, equivalence ratio, H2 fraction in the fuel, and spark plug position in cylinder head. The amount of NOx emissions was being kept under the constrained value of 750 ppm (< 5 g/kWh), which is less than permissible limit for heavy-duty engines.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4141
Author(s):  
Christine Mounaïm-Rousselle ◽  
Pierre Bréquigny ◽  
Clément Dumand ◽  
Sébastien Houillé

The objective of this paper is to provide new data about the possibility of using ammonia as a carbon-free fuel in a spark-ignition engine. A current GDI PSA engine (Compression Ratio 10.5:1) was chosen in order to update the results available in the literature mainly obtained in the CFR engine. Particular attention was paid to determine the lowest possible load limit when the engine is supplied with pure ammonia or a small amount of H2, depending on engine speed, in order to highlight the limitation during cold start conditions. It can be concluded that this engine can run stably in most of these operating conditions with less than 10% H2 (of the total fuel volume) added to NH3. Measurements of exhaust pollutants, and in particular NOx, have made it possible to evaluate the possibility of diluting the intake gases and its limitation during combustion with pure H2 under slightly supercharged conditions. In conclusion, the 10% dilution limit allows a reduction of up to 40% in NOx while guaranteeing stable operation.


Sign in / Sign up

Export Citation Format

Share Document