scholarly journals Influence of Compression Ratio on Flywheel Dimension for a Naturally Aspirated Spark Ignition Engine: A Numerical Study

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aan Yudianto ◽  
Peixuan Li

The proper design of the flywheel undeniably determines in tuning the engine to confirm the better output engine performance. The aim of this study is to mathematically investigate the effect of various values of the compression ratio on some essential parameters to determine the appropriate value for the flywheel dimension. A numerical calculation approach was proposed to eventually determine the dimension of the engine flywheel on a five-cylinder four-stroke Spark Ignition (SI) engine. The various compression ratios of 8.5, 9, 9.5, 10, 10.5, and 11 were selected to perform the calculations. The effects of compression ratio on effective pressure, indicated mean effective pressure (IMEP), dynamic irregularity value of the crankshaft, and the diameter of the flywheel was clearly investigated. The study found that 2.5 increment value of the compression ratio significantly increases the effective pressure of about 41.53% on the starting of the expansion stroke. While at the end of the compression stroke, the rise of effective pressure is about 76.67%, and the changes in dynamic irregularity merely increase by about 1.79%. The same trend applies to the flywheel diameter and width, which increases 2.08% for both.

2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
A. Manivannan ◽  
R. Ramprabhu ◽  
P. Tamilporai ◽  
S. Chandrasekaran

This paper deals with Numerical Study of 4-stoke, Single cylinder, Spark Ignition, Extended Expansion Lean Burn Engine. Engine processes are simulated using thermodynamic and global modeling techniques. In the simulation study following process are considered compression, combustion, and expansion. Sub-models are used to include effect due to gas exchange process, heat transfer and friction. Wiebe heat release formula was used to predict the cylinder pressure, which was used to find out the indicated work done. The heat transfer from the cylinder, friction and pumping losses also were taken into account to predict the brake mean effective pressure, brake thermal efficiency and brake specific fuel consumption. Extended Expansion Engine operates on Otto-Atkinson cycle. Late Intake Valve Closure (LIVC) technique is used to control the load. The Atkinson cycle has lager expansion ratio than compression ratio. This is achieved by increasing the geometric compression ratio and employing LIVC. Simulation result shows that there is an increase in thermal efficiency up to a certain limit of intake valve closure timing. Optimum performance is attained at 90 deg intake valve closure (IVC) timing further delaying the intake valve closure reduces the engine performance.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim ◽  
A. Sohrabi

The operation of spark ignition (SI) engines on lean mixtures is attractive, in principle, since it can provide improved fuel economy, reduced tendency to knock, and extremely low NOx emissions. However, the associated flame propagation rates become degraded significantly and drop sharply as the operating mixture is made increasingly leaner. Consequently, there exist distinct operational lean mixture limits beyond which satisfactory engine performance cannot be maintained due to the resulting prolonged and unstable combustion processes. This paper presents experimental data obtained in a single cylinder, variable compression ratio, SI engine when operated in turn on methane, hydrogen, carbon monoxide, gasoline, iso-octane, and some of their binary mixtures. A quantitative approach for determining the operational limits of SI engines is proposed. The lean limits thus derived are compared and validated against the corresponding experimental results obtained using more traditional approaches. On this basis, the dependence of the values of the lean mixture operational limits on the composition of the fuel mixtures is investigated and discussed. The operational limit for throttled operation with methane as the fuel is also established.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6473
Author(s):  
Stanislaw Szwaja ◽  
Michal Gruca ◽  
Michal Pyrc ◽  
Romualdas Juknelevičius

Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol–butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol–butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol–butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by approximately 4% compared to gasoline 95. To summarize, the proposed glycerol–butanol blend can be directly used as a replacement for gasoline in internal combustion spark-ignition engines.


2014 ◽  
Vol 663 ◽  
pp. 289-293
Author(s):  
M. Nurhidayat Zahelem ◽  
A. Siti Rohana ◽  
N. Haniza B. Jemily ◽  
M. Amzari Aris ◽  
Shukri Zain ◽  
...  

This paper presents the results of an investigation on the effect of 2T oil blend on the performance of Spark Ignition (SI) engine. Three different types of 2T-oils; mineral oil, semi-synthetic oil and fully synthetic oil were tested according to blend ratio before the mixing process with fuel in the carburetor. In the experiment, a two-stroke single-cylinder engine was coupled to a 20 kW generator dynamometer to measure engine performance parameters; engine torque, engine power (B.P), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and brake mean effective pressure (BMEP) at various engine speeds with maximum engine load. The results show correlation between engine performances and 2T-oil blended as a function of type of 2T-oils used.


2014 ◽  
Vol 18 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Motlagh Zangooee ◽  
Razavi Modarres

In the present work, the performance and pollutant emissions in a spark ignition engine has been numerically investigated. For this purpose, the coupled KIVA code with CHEMKIN is used to predict the thermodynamic state of the cylinder charge during each cycle. Computations were carried out for a four cylinder, four strokes, multi point injection system (XU7 engine). Numerical cases have been performed up to 30% vol. of ethanol. Engine simulations are carried out at 2000, 2500 and 3000 rpm and full load condition. The numerical results showed that pollutant emissions reduce with increase in ethanol content. Based on engine performance, the most suitable fraction of ethanol in the blend was found to be nearly 15% for the XU7 engine.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Abstract Biogas, which is a renewable alternative fuel, has high antiknocking properties with the potential to substitute fossil fuels in internal combustion engines. In this study, performance characteristics of a spark-ignition (SI) engine operated under methane (baseline case) and biogas are compared at the compression ratio (CR) of 8.5:1. Subsequently, the effect of CR on operational limits, performance, combustion, and emission characteristics of the engine fueled with biogas is evaluated. A variable compression ratio, spark-ignition engine was operated at various CRs of 8.5:1, 10:1, 11:1, 13:1, and 15:1 over a wide range of operating loads at 1500 rpm. Results showed that the operating range of the engine at 8.5:1 CR reduced when biogas was utilized in the engine instead of methane. However, the operating range of the engine for biogas extended with an increase in CR—an increase from 9.6 N-m-16.5 N-m to 2.8 N-m-15.1 N-m was observed when CR was increased from 8.5:1 to 15:1. The brake thermal efficiency improved from 13.7% to 16.3%, and the coefficient of variation (COV) of indicated mean effective pressure (IMEP) reduced from 12.7% to 1.52% when CR was increased from 8.5:1 to 15:1 at 8 N-m load. The emission level of carbon dioxide was decreased with an increase in CR due to an improvement in the thermal efficiency and the combustion process.


2012 ◽  
Vol 588-589 ◽  
pp. 319-322
Author(s):  
Ye Jian Qian ◽  
Zhi Fang Chen ◽  
Chun Mei Wang

A numerical study is conducted in a port fuel-injection, spark-ignition engine fuelled with 1-butanol at different fuel/air equivalence ratios and inlet air temperatures. The effect of fuel/air equivalence ratio and inlet air temperature on the engine performance and emission characteristics is analyzed. The modeling results show that the incylinder pressure and temperature increases with the increase of fuel/air equivalence ratio. The slightly lean mixtures offer the maximum level of NOX emissions. In addition, preheating the inlet air can increase the incylinder pressure peak value and NOX emissions.


Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Biogas is a promising alternative fuel to reduce the consumption of petroleum-based fuels in internal combustion (IC) engines. In this work, the effect of various biogas compositions on the performance, combustion, and emission characteristics of a spark-ignition (SI) engine is investigated. Additionally, the effect of Wobbe index (WI) of various fuel compositions was also evaluated on the operational limits of the engine. While considering a wide range of biogas compositions (including bio-methane), the percentage of carbon dioxide (CO2) (in a blend of methane and CO2) was increased from 0 to 50% (by volume). A single-cylinder, water-cooled, SI engine was operated at 1500 rpm over a wide range of operating loads with compression ratio of 8.5:1. With the increase in WI of the fuel, both low (limited by coefficient of variation (COV) of indicated mean effective pressure (IMEP)) and high (limited by pre-ignition) operating loads were decreased; however, it was found that the overall operating range was increased. Results also showed that for a given operating load, with the increase of CO2 percentage in the fuel, the brake thermal efficiency was decreased, and the flame initiation and combustion durations were increased. The brake thermal efficiency was decreased from 16.8% to 13.7%, when CO2 was increased from 0% to 40% in methane–CO2 mixture at 8 N·m load. Concerning to emissions, a considerable decrease was noted in nitric oxide, whereas hydrocarbon, carbon monoxide and carbon dioxide emissions were increased, with the increase in CO2 percentage.


Sign in / Sign up

Export Citation Format

Share Document