Hydrogen Fuelled Spark-Ignition Engines: Predictive and Experimental Performance

Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. The performance data reported often tend not to display consistent agreement between the various investigators mainly because of the wide differences in engine type, size, operating conditions used and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. The paper employs a quasi-dimensional two-zone model for the operation of S.I. engines when fuelled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fuelled engine applications (Shrestha and Karim 1999(a) and 1999(b)) was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency and operational limits were investigated. The results of this predictive approach were shown to validate well against corresponding experimental results of our own and those of others, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature and spark timing are presented and discussed. Some guidelines for superior knock free-operation of engines on hydrogen are made also.

2004 ◽  
Vol 128 (1) ◽  
pp. 230-236 ◽  
Author(s):  
Hailin Li ◽  
Ghazi A. Karim

Hydrogen is well recognized as a suitable fuel for spark-ignition engine applications that has many unique attractive features and limitations. It is a fuel that can continue potentially to meet the ever-increasingly stringent regulations for exhaust and greenhouse gas emissions. The application of hydrogen as an engine fuel has been tried over many decades by numerous investigators with varying degrees of success. However, the performance data reported often tend not to display consistent agreement between the various investigators, mainly because of the wide differences in engine type, size, operating conditions used, and the differing criteria employed to judge whether knock is taking place or not. With the ever-increasing interest in hydrogen as an engine fuel, there is a need to be able to model extensively various features of the performance of spark ignition (S.I.) hydrogen engines so as to investigate and compare reliably the performance of widely different engines under a wide variety of operating conditions. In the paper we employ a quasidimensional two-zone model for the operation of S.I. engines when fueled with hydrogen. In this approach, the engine combustion chamber at any instant of time during combustion is considered to be divided into two temporally varying zones: a burned zone and an unburned zone. The model incorporates a detailed chemical kinetic model scheme of 30 reaction steps and 12 species, to simulate the oxidation reactions of hydrogen in air. A knock prediction model, developed previously for S.I. methane-hydrogen fueled engine applications was extended to consider operation on hydrogen. The effects of changes in operating conditions, including a very wide range of variations in the equivalence ratio on the onset of knock and its intensity, combustion duration, power, efficiency, and operational limits were investigated. The results of this predictive approach were shown to validate well against the corresponding experimental results, obtained mostly in a variable compression ratio CFR engine. On this basis, the effects of changes in some of the key operational engine variables, such as compression ratio, intake temperature, and spark timing are presented and discussed. Some guidelines for superior knock-free operation of engines on hydrogen are also made.


Author(s):  
G. Anand ◽  
R. Balamurugan

The present contribution describes the potential of using gaseous fuels like Hythane (CNG/H2 mixtures) as a spark ignition (SI) engine fuel. Genetic Algorithm (GA) is used to optimize the design and operational parameters of a CNG/H2 fueled spark ignition engine for maximizing the engine efficiency subjected to NOx emission constraint. This research deals with quasi-dimensional, two-zone thermodynamic simulation of four-stroke SI engine fueled with CNG/H2 blended fuel for the prediction of the combustion and emission characteristics. The validity of the model has been carried out by comparing the computed results with experimental data obtained under same engine setup and operating conditions. A wide range of engine parameters were optimized using a simple GA regarding both engine efficiency and NOx emissions. The five parameters chosen were compression ratio, engine speed, equivalence ratio, H2 fraction in the fuel, and spark plug position in cylinder head. The amount of NOx emissions was being kept under the constrained value of 750 ppm (< 5 g/kWh), which is less than permissible limit for heavy-duty engines.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Melih Yıldız ◽  
Bilge Albayrak Çeper

For years, the goal of vehicle manufacturers; combustion control of spark ignition engines, ease of passage between the various cycles For years, the goal of vehicle manufacturers; combustion control of spark ignition engines, ease of passage between the various cycles, low emission values of diesel engines, high fuel economy and output power, thereby achieving optimum values in internal combustion engines. In this context, to improve the engine performance and increase the volumetric and thermal efficiency of the engine in all operating conditions to minimize the power losses and to reduce the exhaust emissions in order to obtain the maximum power, most economical and without environmental pollution, continues to be updated. In this study, the optimum working map of the engine was obtained by considering the power, torque, specific fuel consumption, cylinder pressure, exhaust gas temperature, thermal efficiency, average effective pressure, heat dissipation rate and emissions of four stroke, two cylinder, spark ignition SI engine fuel.


2021 ◽  
Vol 22 (2) ◽  
pp. 339-351
Author(s):  
A. A. Dare ◽  
Olanrewaju Olatunde ◽  
O. S. Ismail ◽  
A. S. Shote ◽  
O. J. Alamu ◽  
...  

This research is aimed at investigating the effect of using ethanol (E100) in multi-zone model analysis consisting of multi-combustion chamber zoning cases. The first case considered is a three-zone model that has an unburned zone, burned zone, and transitory zone. The second case model is also three-zone, consisting of an unburned zone and two partitioned burned zones. The burned zone was imagined partitioned into burned zone-1 and burned zone-2 under uneven fuel distribution having different equivalent ratios. The third case is a four-zone model including two regions of burned zone, an unburned zone and a transitory zone, which is unburned burned zone containing a mixture of unburned and burned gases. Arbitrary constants for each of the unburned (CC1) and burned (CC2) Zone leakages in the unburned burned Zone are 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 and 0.5. The Mass Fraction Burned (MFB) for zone-1, x1 and burned zone-2, x2 are computed using Partitioned Burnt Zones Ratios (PBZR) of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 and 8:2. Two equivalent ratios, one for each fuel MFB (?1, ?2), (0.8, 0.6) and (0.6, 0.8) are analyzed using fuel blends of varying percentage. A comparison of values of the three zoning cases is done using peak values from the three-zone models to evaluate the four-zone model. The model was compared with a spark ignition engine (SIE) operating with a premium motor spirit (PMS) serving as baseline. The engine operating conditions were set at an engine speed of 2000 rpm, -35bTDC ignition time, and burn duration at 60 oC. The indicated mean effective pressure (IMEP), thermal efficiency (?), cylinder pressure and emission fraction from the developed models and those of two-zone analysis obtained agreed with literature values. The result showed it is undesirable to have a high volume of burned charge as infiltrate. The three-zone segmented model predicted the highest engine thermal efficiency and peak pressure at mass burn ratio of 7:3. A general reduction in N2 emission was observed for the three-zone transitional and four-zone models. ABSTRAK: Kajian ini menilai kesan etanol (E100) dalam analisis model zon-berbilang yang terdapat pada masalah pengezonan kebuk pembakaran-berbilang. Kes pertama yang diambil kira adalah model tiga-zon yang mempunyai zon tidak terbakar, zon terbakar dan zon peralihan. Model kedua merupakan juga tiga-zon yang terdiri daripada zon tidak-terbakar dan dua zon bahagian yang terbakar. Zon yang terbakar dibahagikan kepada zon-1 terbakar dan zon-2 terbakar di bawah kebakaran tidak sekata yang mempunyai nisbah berlainan. Kes ketiga adalah model zon-keempat termasuk dua kawasan zon terbakar, zon tidak-terbakar dan zon peralihan iaitu zon terbakar tidak-terbakar di mana ia adalah campuran gas terbakar dan tidak-terbakar. Tetapan sebarangan bagi setiap zon kebocoran tidak-terbakar (CC1) dan terbakar (CC2) dalam zon terbakar tidak-terbakar adalah 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 dan 0.5. Pecahan Jisim Terbakar (MFB) bagi zon-1, x1 dan zon-2 terbakar, x2 dikira menggunakan Nisbah Zon Bahagian Terbakar (PBZR) sebanyak 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 dan 8:2. Nisbah dua persamaan, setiap satu bahan api MFB adalah (?1, ?2), (0.8, 0.6) dan (0.6, 0.8) dan diuji menggunakan pelbagai peratus bahan api campuran. Nilai perbandingan bagi tiga kes zon dibuat menggunakan nilai puncak dari model tiga-zon bagi menilai model empat-zon. Model ini dibandingkan dengan enjin cucuhan bunga api (SIE) beroperasi dengan motor alkohol premium (PMS) sebagai garis asas. Keadaan operasi enjin adalah dihadkan pada 2000 rpm kelajuan enjin, masa pencucuhan -35bTDC dan tempoh pembakaran pada 60 oC. Tekanan berkesan min tertunjuk (IMEP), kecekapan haba tertunjuk (?), tekanan silinder dan pecahan pengeluaran dari model yang dibangunkan dan analisis dua-zon yang terhasil adalah sama dengan nilai literatur. Dapatan kajian menunjukkan cas terbakar pada isipadu yang banyak adalah tidak diingini sebagai penyerap. Model tiga bahagian zon menunjukkan kecekapan haba enjin tertinggi dan tekanan puncak pada jisim bakar dengan nisbah 7:3. Manakala, pengurangan umum telah diperhatikan pada pengeluaran N2 di peralihan tiga-zon dan model empat zon.


Author(s):  
A Das ◽  
H C Watson

A 4 litre displacement, six cylinder, fuel injected petrol engine was modified to natural gas (NG) fuelling. Experimental investigation was carried out with various mixture controls and compression ratios over a wide range of operating conditions. As a strategy for combustion chamber shape modification, the compression ratio was raised with simultaneous enhancement of in-cylinder turbulence through squish motion. A fast burning chamber for the combustion of lean mixtures of natural gas and air was developed. Brake thermal efficiency in excess of 40 per cent and brake torque in excess of the peak base torque with petrol were achieved. The research provides the foundation for the implementation of NG cars that will emit only about 65 per cent of the carbon dioxide (CO2) of their petrol engine counterparts, with the prospect of extending the limited range of NG cars by up to one-third and producing low hydrocarbon (HC) and nitrogen oxide (NOx) emissions.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Abstract Biogas, which is a renewable alternative fuel, has high antiknocking properties with the potential to substitute fossil fuels in internal combustion engines. In this study, performance characteristics of a spark-ignition (SI) engine operated under methane (baseline case) and biogas are compared at the compression ratio (CR) of 8.5:1. Subsequently, the effect of CR on operational limits, performance, combustion, and emission characteristics of the engine fueled with biogas is evaluated. A variable compression ratio, spark-ignition engine was operated at various CRs of 8.5:1, 10:1, 11:1, 13:1, and 15:1 over a wide range of operating loads at 1500 rpm. Results showed that the operating range of the engine at 8.5:1 CR reduced when biogas was utilized in the engine instead of methane. However, the operating range of the engine for biogas extended with an increase in CR—an increase from 9.6 N-m-16.5 N-m to 2.8 N-m-15.1 N-m was observed when CR was increased from 8.5:1 to 15:1. The brake thermal efficiency improved from 13.7% to 16.3%, and the coefficient of variation (COV) of indicated mean effective pressure (IMEP) reduced from 12.7% to 1.52% when CR was increased from 8.5:1 to 15:1 at 8 N-m load. The emission level of carbon dioxide was decreased with an increase in CR due to an improvement in the thermal efficiency and the combustion process.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4141
Author(s):  
Christine Mounaïm-Rousselle ◽  
Pierre Bréquigny ◽  
Clément Dumand ◽  
Sébastien Houillé

The objective of this paper is to provide new data about the possibility of using ammonia as a carbon-free fuel in a spark-ignition engine. A current GDI PSA engine (Compression Ratio 10.5:1) was chosen in order to update the results available in the literature mainly obtained in the CFR engine. Particular attention was paid to determine the lowest possible load limit when the engine is supplied with pure ammonia or a small amount of H2, depending on engine speed, in order to highlight the limitation during cold start conditions. It can be concluded that this engine can run stably in most of these operating conditions with less than 10% H2 (of the total fuel volume) added to NH3. Measurements of exhaust pollutants, and in particular NOx, have made it possible to evaluate the possibility of diluting the intake gases and its limitation during combustion with pure H2 under slightly supercharged conditions. In conclusion, the 10% dilution limit allows a reduction of up to 40% in NOx while guaranteeing stable operation.


2003 ◽  
Vol 4 (3) ◽  
pp. 179-192 ◽  
Author(s):  
L Andreassi ◽  
S Cordiner ◽  
V Rocco

The evolution of early stages of homogeneous mixture combustion in spark ignition (SI) engines represents a critical period that greatly affects the whole combustion process. A proper description of this critical phase represents a major issue, which could strongly influence the overall model predictive capability (i.e. model ability to reproduce the real engine behaviour for a large range of operating conditions without any major tuning). Such requirements become even more important for the simulation of last-generation gasoline direct injection or lean stratified engines, where ignition could determine the functionality of the engine itself. In this paper, after a detailed analysis of the ignition physical process and its modelling issues, the predictive capability of the KIVA-3V code has been improved by substituting the original ignition procedure with a more detailed kernel evolution model based on the one presented by Herweg and Maly in 1992. The ignition model introduced in a KIVA-3V version already modified by the authors (re-zoning algorithm, combustion and turbulence models, cylinder wall heat transfer, etc.) has then been tested in order to assess its level of accuracy in describing this complex phenomenon, by varying the most critical engine operating conditions and keeping combustion tuning parameters unchanged. After comparing ignition model results with the corresponding ones presented by Herweg and Maly, a specific application of the overall model (KIVA-3V + ignition model + turbulent combustion model) has been made to perform an analysis of a compressed natural gas (CNG) fuelled engine for heavy-duty applications. To this aim, the in-cylinder combustion history and the related processes as the temperature distribution and NOx formation have been calculated and verified with reference to the experimental data measured in a wide range of operating conditions of an IVECO turbocharged engine.


Author(s):  
Abazar Shamekhi ◽  
Nima Khatibzadeh ◽  
Amir H. Shamekhi

Nowadays, increased attention has been focused on internal combustion engine fuels. Regarding environmental effects of internal combustion engines particularly as pollutant sources and depletion of fossil fuel resources, compressed natural gas (CNG) has been introduced as an effective alternative to gasoline and diesel fuel in many applications. A high research octane number allows combustion at higher compression ratios without knocking and good emission characteristics of HC and CO are major benefits of CNG as an engine fuel. In this paper, CNG as an alternative fuel in a spark ignition engine has been considered. Engine performance and exhaust emissions have been experimentally studied for CNG and gasoline in a wide range of the engine operating conditions.


2014 ◽  
Vol 984-985 ◽  
pp. 945-949
Author(s):  
Vijayashree ◽  
P. Tamil Porai ◽  
N.V. Mahalakshmi ◽  
V. Ganesan

Researchers strive to improve the performance characteristics such as power, thermal efficiency, mean effective pressure etc. of automotive engines. As the emission norms are becoming stringent day by day, the car manufacturers try their best to decrease the emissions and improve the performance without major compromise on performance. Improvements in the performance of an engine are can be achieved by increasing the compression ratio below detonating values. In this study influence of compression ratio on cylinder peak pressure, power, efficiency, and work for a four-stroke spark-ignition engine is reported. Both experimental and theoretical studies have been undertaken. Theoretical work is carried out using thermodynamic modelling techniques. Compression ratios ranging between 6.3 and 10.3 are considered in the speed range of 1200 and 2800 rpm. Experiments have been carried out on a single cylinder engine for a compression of 8.3 over the above speed range. The investigation is carried out particularly at such low speeds since in city driving the vehicles run only at part throttle in the above range of engine speed. The general conclusion is that the increase in compression ratio increases the performance.


Sign in / Sign up

Export Citation Format

Share Document