scholarly journals Soil Chemical Properties and Maize (Zea mays L.) Yield influenced by Lime and Fern (Pteris vittata)

Author(s):  
Nguyen Van CHUONG ◽  
Trang Kien BUSH

This study aimed to investigate the influence of liming and fern on reducing the absorption of arsenic (As) by maize and As content in the soil. The single-factor experiment was designed in a completely random block (4 treatments and 4 replicates). Treatments were followed: Treatment 1 (NT1) liming (3tons CaO.ha-1); NT2: Plant ferns alternately with maize (without liming); NT3: Plant ferns alternately with maize and liming (3 tons CaO.ha-1); NT4: Control (no liming or ferns). The results showed that the applications of liming and ferns have positive influences on the soil pH, EC, OM, yield, and yield components of the maize tested in this study. The yield difference between the application of liming and intercropped ferns was increased from 5.4 to 22.3 %. Moreover, the arsenic contents in soil, stems, and seeds were 25.7, 32.0 and 50 % lower than that of the control, respectively. soil to roots and stems, which significantly caused reduction of a large amount of As content in soils. Therefore, to reduce the production cost, and enhance soil and maize quality, application of lime (3 ton.ha-1) and intercropped ferns is recommended. HIGHLIGHTS Increasing pH, EC and organic matter by the lime application combined with ferns Decreasing the soil arsenic concentration by intercroping maizes and ferns The lime application combined with ferns raising the yield components and yield of maize The high As accumulation of stems and shoots of ferns intercroping maizes and ferns The lowest As accumulation of stems and seeds of maizes applying the lime combined with ferns

2016 ◽  
Vol 11 (45) ◽  
pp. 4654-4660 ◽  
Author(s):  
A. Fadlalla Hashim ◽  
A. A. Abukhlaif Hatim ◽  
S. Mohamed Somaya

2015 ◽  
Vol 12 (2) ◽  
pp. 74-82 ◽  
Author(s):  
Md. Habibur Rahman ◽  
Md. Mohashin Farazi ◽  
Kohinoor Begum ◽  
Md. Serazul Islam

Rice (Oryza sativa L.) is one of the major food crops in many countries. As the cultivation of rice requires huge volume of water, long term use of Arsenic contaminated groundwater for irrigation may result in the increase of arsenic concentration in the agricultural soil and eventually accumulation in rice grains. A micro level study was conducted to investigate the transfer of arsenic from irrigation water and soil to rice plants in the arsenic affected 8 unions of Chandina upazilla, Comilla district. The level of arsenic in irrigation water (0.12±0.08 and 0.67±0.07 mg l-1) was much above the WHO permissible limit of 0.01 mg l-1 for drinking water and FAO permissible limit of 0.10 mg l-1 for irrigation water. The total soil arsenic concentrations ranged from 3.21±0.80 to 8.74±2.83 mg kg-1 dry weight of soil, which was below the maximum acceptable limit for agricultural soil of 20.0 mg kg-1 as recommended by the European Community. The accumulation of arsenic in the grain ranged from 0.12±0.04 to 0.58±0.06 mg kg-1 in Boro and 0.16±0.04 to 1.06±0.20 mg kg-1 in T. Aman. Except grain sample (T. Aman) of one union, the grains in both Boro and T. Aman of all unions did not exceed 1.0 mg kg-1 dry weight of arsenic (the permissible limit of arsenic in rice according to WHO recommendation). Thus, till now rice has remained harmless for consumption in the study area. The results clearly showed that the arsenic content in the grains of Boro rice is correlated to the intensity of arsenic contamination of irrigation water and soil. The Agriculturists 2014; 12(2) 74-82


Author(s):  
Nasratullah Habibi ◽  
Friba Sikandari

An experiment was conducted to evaluate effect of urea fertilizer on yield and yield components of Zea mays L. Using Randomized Complete Block Design (RCBD) split plots in three replications in agricultural research farm of Balkh University by 2019. Doses of urea used in this experiment were 0, 80, 160 and 240 kg ha-1 , respectively. It has been found that amount of nitrogen fertilizer (urea) had significant effect on yield of maize at p<0.05. The higher level of nitrogen caused the higher grain yield, number of kernels per ear, the number of grains per ear row, ear diameter, cob length, grain per plant and plant height. As a result 7.76 ton ha-1 was recorded as high yield while 240 kg ha-1 urea was used, and 5.12 ton ha-1 was recorded as low yield in treatment one with 0 kg ha-1 of nitrogen fertilizer. Finally, as a result using 240 kg ha-1 nitrogen fertilizer is recommended.


2020 ◽  
Vol 104 (2) ◽  
pp. 259-264
Author(s):  
Dongfang Xiang ◽  
Shuijiao Liao ◽  
Shuxin Tu ◽  
Duanwei Zhu ◽  
Tian Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document