scholarly journals Determination of Geotechnical Properties and Stability of Expansive Soil using Fly Ash

Author(s):  
Farhan KHAN ◽  
Bhumika DAS ◽  
Nomesh DEWANGAN

This study was conducted to have a detailed analysis of the geotechnical properties of expansive soil and fly ash from Sipat thermal power plant. It reported the findings of laboratory studies on certain common physical and geotechnical properties. The chemical properties and morphology of the black cotton soil (BCS) and fly ash is also determined using scanning electron microscopy and X-ray diffraction test. The geotechnical test includes determining specific gravity, particle size distribution, moisture content, standard proctor test, free swell index, and Atterberg’s limit. The different compositions of expansive soil with fly ash, yellow soil, moorum, and sand are studied. BCS was evaluated with fly ash, fly ash and sand, BCS with yellow soil, and moorum and fly ash. The study also analyzed the details and results of different tests conducted on soil samples. The results showed that strength and fly ash are inversely proportional; as fly ash increases, strength decreases, and vice versa. Fly ash was added from 20 to 80 % by replacing expansive soil by weight. The results indicated that expansive soil can be stabilized by the addition of fly ash to a limit of 10 to 20 %. HIGHLIGHTS The XRD And SEM results shows the mineral present in the FlyAsh and Expansive soil The geotechnical properties of Flyash and expansive soil is determined The OMC increases with decrease in densities The Particle size distribution curve shows the soil is GW soil GRAPHICAL ABSTRACT

2021 ◽  
Vol 15 (1) ◽  
pp. 75-82
Author(s):  
Mingzi Xu ◽  
Changdong Sheng

The present work aims to develop a simple model for describing the particle size distribution (PSD) of residual fly ash from pulverized biomass combustion. The residual ash formation was modelled considering the mechanism of fragmentation and coalescence. The influences of particle shape and stochastic fragmentation on model description of the PSD of the fly ash were investigated. The results showed that biomass particle shape has a great influence on the model prediction, and a larger fragmentation number is required for cylindrical particles than that for spherical particles to get the same PSD of fly ash, and the fragment number of the particles increases with the shape factor increasing. For pulverized biomass with a wide size distribution, the model predicted ash PSD considering the stochastic fragmentation is very similar to that assuming uniform fragmentation. It implies that the simple model assuming uniform fragmentation is applicable for predicting fly ash size distribution in practical processes where biomass particles have a wide range of sizes. For the fuel with a narrower initial PSD, the stochastic fragmentation model generally predicts a coarser PSD of the residual ash than assuming uniform fragmentation. It means the stochastic fragmentation is of great influence to be considered for accurate description of ash formation from the fuel with a narrow PSD.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2020 ◽  
Vol 26 (1) ◽  
pp. 82-93
Author(s):  
Reihaneh Radmanesh ◽  
◽  
Mohsen Nabi Meybodi ◽  
Vahid Ramezani ◽  
Maryam Akrami ◽  
...  

Aims: Any pharmaceutical product made in pharmacy, hospital or factory may be contaminated with microbes. This contamination can originate from raw materials or during production. Hence, it is important to study the physical and chemical properties and stability of compounded drugs. Methods & Materials: In this study, first a specific sample of prescribed medication was ordered from 63 pharmacies in Yazd, Iran. After collecting the samples, the amount of microbial contamination, viscosity and particle size distribution and their stability were investigated and their results were compared to the standard levels. Findings: Based on the results, 31.7% of the samples had discoloration and 23.8% showed creaming phenomenon. In terms of particle size distribution, 57.1% of the samples had a 20-40 μm particle size and 49.2% had a viscosity equal to 2500-3000 centipoise. Regarding stability, 12.6% of the samples underwnet phase change at 30-40°C. About of the amount of hydroquinone in samples, 35% had acceptable amount. In 23.8% of the samples, fungal infection was observed. Conclusion: Contrary to a popular belief that the compounded medicines produced in pharmacies have microbial contamination, the results of this study showed that the microbial contamination of these compounded medications is low.


2019 ◽  
Vol 58 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Yong-Sik Chu ◽  
Batmunkh Davaabal ◽  
Dae-Sung Kim ◽  
Sung-Kwan Seo ◽  
Yoo Kim ◽  
...  

Abstract The effect of two different milling devices, namely attrition mill versus vibration mill, on the reactivity of fly ash was studied. High calcium fly ash from 4th Thermal power station of Ulaanbaatar (Mongolia) was used for the experiments. The raw and processed samples were characterized by XRD, SEM, Particle size distribution, BET, Blaine surface area and density measurements. The efficiency of 1 hour milling was evaluated with the Blaine surface area set to be more than 5000 cm2/g. The physical and chemical properties of the attrition milled fly ash changed not much compared to the vibration milled samples. For example the d50 particle size became reduced from 29 µm to 6 µm by attrition milling and in vibration milled fly ash it was reduced to 7 µm. The density increased from 2.44 g/cm3 of raw fly ash to 2.84 g/cm3 and 2.79 g/cm3 in attrition and vibration milled samples, respectively. Mechanical milling revealed not only a particle size reduction but also the formation of a denser microstructure. As a result the vibration milled fly ash showed a weaker interaction with the alkaline solution (8 M NaOH used here) compared to the attrition milled fly ash. Consequently, compressive strength of the binder prepared using the attrition milled fly ash was higher, 61 MPa, while for vibration milled fly ash it was 49 MPa. For comparison unmilled fly ash, it was 21 MPa.


2008 ◽  
Vol 5 (4) ◽  
pp. 485-494 ◽  
Author(s):  
H. Rönkkömäki ◽  
R. Pöykiö ◽  
H. Nurmesniemi ◽  
K. Popov ◽  
E. Merisalu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document