scholarly journals Generation of a New Three Dimension Autonomous Chaotic Attractor and its Four Wing Type

2013 ◽  
Vol 3 (1) ◽  
pp. 352-358
Author(s):  
F. Yu ◽  
C. Wang

In this paper, a new three-dimension (3D) autonomous chaotic system with a nonlinear term in the form of a hyperbolic sine (or cosine) function is reported. Some interesting and complex attractors are obtained. Basic dynamical properties of the new chaotic system are demonstrated in terms of Lyapunov exponents, Poincare mapping, fractal dimension and continuous spectrum. Meanwhile, for further enhancing the complexity of the topological structure of the new chaotic attractors, the attractors are changed from two-wing to four-wing through making axis doubly polarized, theoretically analyzed and numerically simulated. The obtained results clearly show that the chaotic system deserves further detailed investigation.

2004 ◽  
Vol 14 (05) ◽  
pp. 1507-1537 ◽  
Author(s):  
JINHU LÜ ◽  
GUANRONG CHEN ◽  
DAIZHAN CHENG

This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.


2012 ◽  
Vol 542-543 ◽  
pp. 1042-1046 ◽  
Author(s):  
Xin Deng

In this paper, the first new chaotic system is gained by anti-controlling Chen system,which belongs to the general Lorenz system; also, the second new chaotic system is gained by anti-controlling the first new chaotic system, which belongs to the general Lü system. Moreover,some basic dynamical properties of two new chaotic systems are studied, either numerically or analytically. The obtained results show clearly that Chen chaotic system and two new chaotic systems also can form another Lorenz system family and deserve further detailed investigation.


2004 ◽  
Vol 14 (04) ◽  
pp. 1395-1403 ◽  
Author(s):  
WENBO LIU ◽  
GUANRONG CHEN

Recently, we have investigated a new chaotic system of three-dimensional autonomous quadratic ordinary differential equations, and found that the system visually displays a four-scroll chaotic attractor confirmed by both numerical simulations and circuit implementation. In this paper, we further study the following question: Is it really true that this system can generate a four-scroll chaotic attractor, or is it only a numerical artifact? By a more careful theoretical analysis along with some further numerical simulations, we conclude that the four-scroll chaotic attractor of this system, which we observed on both computer and oscilloscope, cannot actually exist in theory. The fact is that this system has two co-existing two-scroll chaotic attractors that are arbitrarily close in the phase space for some system parameters, therefore extremely tiny numerical round-off errors or signal fluctuations will nudge the system orbit to switch from one attractor to another, thereby forming the seemingly single four-scroll chaotic attractor on screen display.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950181
Author(s):  
Fahimeh Nazarimehr ◽  
Viet-Thanh Pham ◽  
Karthikeyan Rajagopal ◽  
Fawaz E. Alsaadi ◽  
Tasawar Hayat ◽  
...  

This paper proposes a new chaotic system with a specific attractor which is bounded in a sphere. The system is offered in the spherical coordinate. Dynamical properties of the system are investigated in this paper. The system shows multistability, and all of its attractors are inside or on the surface of the specific sphere. Bifurcation diagram of the system displays an inverse period-doubling route to chaos. Lyapunov exponents of the system are studied to show its chaotic attractors and predict its bifurcation points.


2007 ◽  
Vol 21 (25) ◽  
pp. 1687-1696 ◽  
Author(s):  
XINGYUAN WANG ◽  
XIANGJUN WU ◽  
YAHUI LANG

In this paper a chaotic system is proposed via modifying hyperchaotic Chen system. Some basic dynamical properties, such as Lyapunov exponents, fractal dimension, chaotic behaviors of this system are studied. The conventional feedback, linear function feedback, nonlinear hyperbolic function feedback control methods are applied to control chaos to unstable equilibrium point. The conditions of stability to control the system is derived according to the Routh–Hurwitz criteria. Numerical results have shown the validity of the proposed schemes.


2009 ◽  
Vol 20 (02) ◽  
pp. 323-335 ◽  
Author(s):  
GUOSI HU ◽  
BO YU

Recently, there are many methods for constructing multi-wing/multi-scroll or hyperchaotic attractors; however, it has been noticed that the attractors with both multi-wing topological structure and hyperchaotic characteristic rarely exist. A new chaotic system, obtained by making the change on coordinate to the Hu chaotic system, can generate very complex attractors with four-wing topological structure and three positive Lyapunov exponents over a wide range of parameters. The influence of parameters varying to system dynamics is analyzed, computer simulations and bifurcation analysis is also verified in this paper.


2012 ◽  
Vol 2 (2) ◽  
pp. 209-215 ◽  
Author(s):  
F. Yu ◽  
C. Wang

A novel three dimension autonomous (3D) chaotic system with a quadratic exponential nonlinear term and a quadratic cross-product term is described in this paper. The basic dynamical properties of the new attractor are studied. The forming mechanism of its compound structure, obtained by merging together two simple attractors after performing one mirror operation, has been investigated by detailed numerical as well as theoretical analysis. Finally, the exponential operation circuit and its temperature-compensation circuit, which makes the new system more applicable from a practical engineering perspective, are investigated.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 564 ◽  
Author(s):  
Jesus Munoz-Pacheco ◽  
Ernesto Zambrano-Serrano ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jacques Kengne ◽  
...  

In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.


2010 ◽  
Vol 20 (03) ◽  
pp. 727-734 ◽  
Author(s):  
BO YU ◽  
GUOSI HU

Few reports have introduced chaotic attractors with both multiwing topological structure and hyperchaotic dynamics. A simple construction method, for designing chaotic system with multiwing attractors, is presented in this paper. The number of wings in the attractor was doubled on applying this method to an arbitrary smooth chaotic system. Moreover, the hyperchaotic property is preserved in the new system. A new hyperchaotic system with 16-wing attractors is constructed; the result system is not only verified via numerical simulation but also confirmed by a DSP-based experiment.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750152 ◽  
Author(s):  
Zhen Wang ◽  
Zhe Xu ◽  
Ezzedine Mliki ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Designing chaotic systems with specific features is a very interesting topic in nonlinear dynamics. However most of the efforts in this area are about features in the structure of the equations, while there is less attention to features in the topology of strange attractors. In this paper, we introduce a new chaotic system with unique property. It has been designed in such a way that a specific property has been injected to it. This new system is analyzed carefully and its real circuit implementation is presented.


Sign in / Sign up

Export Citation Format

Share Document