scholarly journals Smoothing the Power Output of a Wind Turbine Group with a Compensation Strategy of Power Variation

2021 ◽  
Vol 11 (4) ◽  
pp. 7343-7348
Author(s):  
P. D. Chung

This paper proposes a new scheme to reduce the output power variation range of a wind turbine group without an energy storage system. This proposal is based on the active power compensation principle for each wind turbine. In this research, the wind turbine operates in the active power control mode. The reference active power is calculated in such a way that it compensates for the difference between the average output power and the actual output power. To verify and evaluate the proposed method, we simulated a group of two 1.5MW-wind turbines in the Simulink environment of MATLAB. Simulation results were compared to the ones of a wind turbine group without any smoothing scheme and the ones of the same group with the Exponential Moving Average method. From this comparison, we can conclude that with the proposed method, the actual output power of the wind turbine group becomes smoother than that of the wind turbine group without any smoothing scheme. Moreover, the performance of the wind turbine group with the proposed method is better than that of the wind turbine group with the Exponential Moving Average method.

Author(s):  
Dinh Chung Phan ◽  
Ngọc An Luu

This paper focused on evaluating the application of exponential moving average method into wind turbine to smooth its power output without an energy storage system or an anemometer. Wind turbine control modes including active power control mode and rotor speed control mode are considered. For each control mode, two positions of the Exponential Moving Average method in controller were compared to choose the best position. Additionally, the impact of smoothing factor on wind turbine performance was also considered to determine a reasonable value of the smoothing factor for each control mode. Simulation results in MATLAB/Simulink indicated that, for wind turbine using rotor speed control mode, the Exponential Moving Average method should be applied to reduce the variation of actual rotor speed signal while for wind turbine with the power control mode, it should be used to smooth reference power signal. From the performance of wind turbine with different smoothing factor values, we can suggest that the smoothing factor value should be set at 0.5 and 0.4 for the power control mode and the rotor speed control mode, respectively.


2019 ◽  
Vol 41 (6) ◽  
pp. 1519-1527 ◽  
Author(s):  
Xiaokun Dai ◽  
Yang Song ◽  
Taicheng Yang

This paper deals with the modelling and control for wind turbine combined with a battery energy storage system (WT/BESS). A proportional-integral (PI) controller of pitch angle is applied to adjust the output power of WT, and a method for battery scheduling is presented for maintaining the state of charging (SOC) of BESS. When the battery level is below the lower limit, we increase the expected output power of wind turbine through raising the operation point to charge the battery. Considering the effect of charging/discharging, a switched linear system model with two equilibriums is presented firstly for such WT/BESS system. The region stability is analyzed and an approach for estimating the corresponding stable region is also given. The effectiveness of the proposed results is demonstrated by a numerical example.


2004 ◽  
Vol 124 (8) ◽  
pp. 1059-1066 ◽  
Author(s):  
Tatsuto Kinjyo ◽  
Tomonobu Senjyu ◽  
Katsumi Uezato ◽  
Hideki Fujita

2012 ◽  
Vol 463-464 ◽  
pp. 1715-1720
Author(s):  
Rui Ma ◽  
Shu Ju Hu ◽  
Xun Bo Fu ◽  
Hong Hua Xu ◽  
Nian Hong Li

Above rated wind speed, the wind turbine speed and output power are maintained near the rated values through the coordinative control of torque and pitch angle. Due to the non-linear behavior of the wind turbine, the traditional PID control is not effective in the pitch control. And accurate mathematical model of wind turbine is very difficult to get. In order to solve the problem, the fuzzy adaptive tuning PID control algorithm is proposed in the paper. About torque control strategy, constant torque control mode and constant power control mode are simulated respectively. Based on the analysis and comparison of the advantages and disadvantages of both modes, a mix control mode is proposed in order to give consideration to both torque and power. Simulation was carried out with the proposed torque control and pitch control strategy in MATLAB and GH Bladed software. The results proved that output power is optimized and the response of the wind turbine is good


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Jianxiao Zou ◽  
Junping Yao ◽  
Qingze Zou ◽  
Hongbing Xu ◽  
Zhenzhen Zhang

With more and more wind farms integrated into the power grid, the stability and security of the grid can be significantly affected by the wind-farm-generated power, due to the intermittent and volatile nature of the wind-farm-generated power. Therefore, control of the wind-farm power to meet the stability and quality requirements becomes important. Active control of wind-farm power, however, is challenging because the wind-farm output power can only be reliably predicted for a short period of time (i.e., ultrashort term power prediction), and large variations exist in the wind-turbine output power. In this paper, an optimal active power control scheme is proposed to maximize the running time of each wind turbine, and minimize the on-and/or-off switching of wind turbines, resulting in substantial reduction of wind-turbine wear and thereby, maintenance cost, and extension of wind-turbine lifetime, all together, a significant saving of operation cost of the whole wind farm. The proposed approach is illustrated by implementing it to the active power allocation of a wind-farm model in simulation.


Sign in / Sign up

Export Citation Format

Share Document