scholarly journals Degradacja próchnicy czarnoziemów ornych na przykładzie Ponidzia

2021 ◽  
Vol 66 (3) ◽  
pp. 27-33
Author(s):  
Katarzyna Ostaszewska ◽  
Bogumił Wicik ◽  
Andrzej Harasimiuk

The paper presents the results of research on the degradation of chernozems in part of the Proszowice lobe (near Pińczów). The currently progressing process of degradation of chernozems is showed in the decline of their physical and chemical properties (among others increased predisposition to soaking, changes in the content of organic carbon and nitrogen). The results were analyzed in the context of changes in the technology of farming. For the analysis, samples from areas with different types of use and different history of use (including archaeological sites) were collected. A significant decline of soil properties was found. They were expressed by destruction of the soil structure of humus horizon. It starts increase in the susceptibility of the soil clumping, soaking and erosion. The humus contents in researched samples are low (as content for Chernozem), but there is no different in this parameter determined half century ago. Currently, low values of the C/N coefficient indicate the impact of mineral fertilization (increasing the nitrogen content) and are part of the anthropogenic degradation of the analyzed Chernozems.

Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Christian Henkel ◽  
Leslie K. Hunt ◽  
Yuri I. Izotov

Dwarf galaxies are by far the most numerous galaxies in the Universe, showing properties that are quite different from those of their larger and more luminous cousins. This review focuses on the physical and chemical properties of the interstellar medium of those dwarfs that are known to host significant amounts of gas and dust. The neutral and ionized gas components and the impact of the dust will be discussed, as well as first indications for the existence of active nuclei in these sources. Cosmological implications are also addressed, considering the primordial helium abundance and the similarity of local Green Pea galaxies with young, sometimes protogalactic sources in the early Universe.


Environments ◽  
2018 ◽  
Vol 5 (9) ◽  
pp. 104 ◽  
Author(s):  
Elizabeth Pillar-Little ◽  
Marcelo Guzman

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. The resulting complex mixture of organic aerosol has variable physical and chemical properties that contribute further to the uncertainty of these species modifying the radiative budget. Correlations between oxidative processing and increased absorptivity, hygroscopicity, and cloud condensation nuclei activity have been observed, but the mechanisms behind these phenomena have remained unexplored. Herein, we review environmentally relevant heterogeneous mechanisms occurring on interfaces that contribute to the processing of aerosols. Recent laboratory studies exploring processes at the aerosol–air interface are highlighted as capable of generating the complexity observed in the environment. Furthermore, a variety of laboratory methods developed specifically to study these processes under environmentally relevant conditions are introduced. Remarkably, the heterogeneous mechanisms presented might neither be feasible in the gas phase nor in the bulk particle phase of aerosols at the fast rates enabled on interfaces. In conclusion, these surface mechanisms are important to better understand how organic aerosols are transformed in the atmosphere affecting the environment.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1297 ◽  
Author(s):  
Cristian Gómez-Rodríguez ◽  
Daniel Fernández-González ◽  
Linda Viviana García-Quiñonez ◽  
Guadalupe Alan Castillo-Rodríguez ◽  
Josué Amilcar Aguilar-Martínez ◽  
...  

The chemical environment and the internal conditions of the furnaces and ladles are extremely aggressive for the refractories, so metallurgical industries demand refractory linings with greater durability and resistance to avoid unforeseen stoppages and to reduce the changes of the furnace lining. Therefore, the current work aims to evaluate the impact of the additions of ZrO2-nanoparticles (1, 3, and 5 wt. %) in magnesia-based bricks. A comparative study of the physical and chemical properties in bricks obtained using two cold pressing techniques (uniaxial and isostatic pressing) and two sintering temperatures (1550 and 1650 °C) was carried out. The microstructure and crystalline phase characteristics obtained after the heat treatments and the slag corrosion test was studied using scanning electron microscopy/electron dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). The results reveal that the sample with 5 wt. % of ZrO2 nanoparticles (obtained by cold isostatic pressing and sintering at 1650 °C) has the lowest porosity and greatest resistance to penetration of blast furnace slag.


2018 ◽  
Vol 251 ◽  
pp. 02023
Author(s):  
Feodor Portnov

The paper studies kinetic properties of aerosols formed in thermal degradation of wood. The impact of modifying agents in wood surface layer on the quantitative composition of smoke aerosol solids was analyzed. For this purpose, grain-size of aerosol solids was analyzed, and the physical and chemical properties of source and modified wood were assessed.


1975 ◽  
Vol 1975 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Hans J. Crump-Wiesner ◽  
Allen L. Jennings

ABSTRACT Legislative history of water pollution control has not included detailed scientific definitions of what is meant by the rather inclusive term “oil.” Because of the publicity surrounding spills of crude or petroleum-derived oils, little attention has been focused on non-petroleum oils. Approximately 5% of the oil spills reported to the Environmental Protection Agency are nonpetroleum oils. Their physical and chemical properties and adverse environmental effects are strikingly similar to the behavior of petroleum oil in the aquatic environment. This paper presents a comparative analysis of the properties and effects of petroleum versus nonpetroleum oils. Their similarities prove that these oils should be treated as one entity regardless of their origin. Finally, additional guidelines are presented to provide a more broadly applicable distinction between oil and other hazardous materials for enforcement purposes.


2018 ◽  
Vol 115 (2) ◽  
pp. 209
Author(s):  
Debjani Nag ◽  
P. Kopparthi ◽  
P.S. Dash ◽  
V.K. Saxena ◽  
S. Chandra

Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yadian Xie ◽  
Duygu Kocaefe ◽  
Chunying Chen ◽  
Yasar Kocaefe

The nanomaterials have been widely used in various fields, such as photonics, catalysis, and adsorption, because of their unique physical and chemical properties. Therefore, their production methods are of utmost importance. Compared with traditional synthetic methods, the template method can effectively control the morphology, particle size, and structure during the preparation of nanomaterials, which is an effective method for their synthesis. The key for the template method is to choose different templates, which are divided into hard template and soft template according to their different structures. In this paper, the effects of different types of templates on the morphology of nanomaterials during their preparation are investigated from two aspects: hard template and soft template, combined with the mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document