scholarly journals Survey on Prediction of Loan Approval Using Machine Learning Techniques

Author(s):  
Ambika ◽  
Santosh Biradar

The enhancement in the banking sector lots of people are applying for bank loans but the bank has its limited assets which it has to grant to limited people only, so finding out to whom the loan can be granted which will be a safer option for the bank is a typical process. So in this paper we try to reduce this risk factor behind selecting the safe person so as to save lots of bank efforts and assets. This is done by mining the Big Data of the previous records of the people to whom the loan was granted before and on the basis of these records/experiences the machine was trained using the machine learning model which give the most accurate result. The main objective of this paper is to predict whether assigning the loan to particular person will be safe or not. This paper is divided into four sections (i)Data Collection (ii) Comparison of machine learning models on collected data (iii) Training of system on most promising model (iv) Testing.

2022 ◽  
pp. 220-249
Author(s):  
Md Ariful Haque ◽  
Sachin Shetty

Financial sectors are lucrative cyber-attack targets because of their immediate financial gain. As a result, financial institutions face challenges in developing systems that can automatically identify security breaches and separate fraudulent transactions from legitimate transactions. Today, organizations widely use machine learning techniques to identify any fraudulent behavior in customers' transactions. However, machine learning techniques are often challenging because of financial institutions' confidentiality policy, leading to not sharing the customer transaction data. This chapter discusses some crucial challenges of handling cybersecurity and fraud in the financial industry and building machine learning-based models to address those challenges. The authors utilize an open-source e-commerce transaction dataset to illustrate the forensic processes by creating a machine learning model to classify fraudulent transactions. Overall, the chapter focuses on how the machine learning models can help detect and prevent fraudulent activities in the financial sector in the age of cybersecurity.


2020 ◽  
Vol 9 (6) ◽  
pp. 379 ◽  
Author(s):  
Eleonora Grilli ◽  
Fabio Remondino

The use of machine learning techniques for point cloud classification has been investigated extensively in the last decade in the geospatial community, while in the cultural heritage field it has only recently started to be explored. The high complexity and heterogeneity of 3D heritage data, the diversity of the possible scenarios, and the different classification purposes that each case study might present, makes it difficult to realise a large training dataset for learning purposes. An important practical issue that has not been explored yet, is the application of a single machine learning model across large and different architectural datasets. This paper tackles this issue presenting a methodology able to successfully generalise to unseen scenarios a random forest model trained on a specific dataset. This is achieved looking for the best features suitable to identify the classes of interest (e.g., wall, windows, roof and columns).


2013 ◽  
Vol 14 (5) ◽  
pp. 923-939 ◽  
Author(s):  
Ion Smeureanu ◽  
Gheorghe Ruxanda ◽  
Laura Maria Badea

Machine learning techniques have proven good performance in classification matters of all kinds: medical diagnosis, character recognition, credit default and fraud prediction, and also foreign exchange market prognosis. Customer segmentation in private banking sector is an important step for profitable business development, enabling financial institutions to address their products and services to homogeneous classes of customers. This paper approaches two of the most popular machine learning techniques, Neural Networks and Support Vector Machines, and describes how each of these perform in a segmentation process.


2021 ◽  
Author(s):  
Manimegaai C T ◽  
kali muthu ◽  
sabitha gauni

Abstract These days population are taking a risk in their drive and in no time dangers are happening, and loosing lives by doing tiny wrongs when on drive near restricted zones. To escape these accidents to make population risk free traffic department are introducing signboards. But then again with the ignorance of the people, dangers are happening again, so “Li-Fi technology” is being used here to decrease the count of accidents. The transmission takes place with the help of LEDs (Light Emitting Diodes).Text, audio and video can also be transmitted with the help of this li-fi. The transmission is done when the light turns on and off. When this is compared to Wi-Fi it has many advantages like this light is not harmful to human body. The Transmission takes place in the form of zeroes and ones. Therefore to avoid accidents we suggested an intelligent, adaptable, and efficient model that utilizes Machine Learning techniques. The proposed system helps in vehicle to vehicle and vehicle to Infrastructure communication systems.


Analysis of credit scoring is an effective credit risk assessment technique, which is one of the major research fields in the banking sector. Machine learning has a variety of applications in the banking sector and it has been widely used for data analysis. Modern techniques such as machine learning have provided a self-regulating process to analyze the data using classification techniques. The classification method is a supervised learning process in which the computer learns from the input data provided and makes use of this information to classify the new dataset. This research paper presents a comparison of various machine learning techniques used to evaluate the credit risk. A credit transaction that needs to be accepted or rejected is trained and implemented on the dataset using different machine learning algorithms. The techniques are implemented on the German credit dataset taken from UCI repository which has 1000 instances and 21 attributes, depending on which the transactions are either accepted or rejected. This paper compares algorithms such as Support Vector Network, Neural Network, Logistic Regression, Naive Bayes, Random Forest, and Classification and Regression Trees (CART) algorithm and the results obtained show that Random Forest algorithm was able to predict credit risk with higher accuracy


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Choudhary Sobhan Shakeel ◽  
Saad Jawaid Khan ◽  
Beenish Chaudhry ◽  
Syeda Fatima Aijaz ◽  
Umer Hassan

Alopecia areata is defined as an autoimmune disorder that results in hair loss. The latest worldwide statistics have exhibited that alopecia areata has a prevalence of 1 in 1000 and has an incidence of 2%. Machine learning techniques have demonstrated potential in different areas of dermatology and may play a significant role in classifying alopecia areata for better prediction and diagnosis. We propose a framework pertaining to the classification of healthy hairs and alopecia areata. We used 200 images of healthy hairs from the Figaro1k dataset and 68 hair images of alopecia areata from the Dermnet dataset to undergo image preprocessing including enhancement and segmentation. This was followed by feature extraction including texture, shape, and color. Two classification techniques, i.e., support vector machine (SVM) and k -nearest neighbor (KNN), are then applied to train a machine learning model with 70% of the images. The remaining image set was used for the testing phase. With a 10-fold cross-validation, the reported accuracies of SVM and KNN are 91.4% and 88.9%, respectively. Paired sample T -test showed significant differences between the two accuracies with a p < 0.001 . SVM generated higher accuracy (91.4%) as compared to KNN (88.9%). The findings of our study demonstrate potential for better prediction in the field of dermatology.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chalachew Muluken Liyew ◽  
Haileyesus Amsaya Melese

AbstractPredicting the amount of daily rainfall improves agricultural productivity and secures food and water supply to keep citizens healthy. To predict rainfall, several types of research have been conducted using data mining and machine learning techniques of different countries’ environmental datasets. An erratic rainfall distribution in the country affects the agriculture on which the economy of the country depends on. Wise use of rainfall water should be planned and practiced in the country to minimize the problem of the drought and flood occurred in the country. The main objective of this study is to identify the relevant atmospheric features that cause rainfall and predict the intensity of daily rainfall using machine learning techniques. The Pearson correlation technique was used to select relevant environmental variables which were used as an input for the machine learning model. The dataset was collected from the local meteorological office at Bahir Dar City, Ethiopia to measure the performance of three machine learning techniques (Multivariate Linear Regression, Random Forest, and Extreme Gradient Boost). Root mean squared error and Mean absolute Error methods were used to measure the performance of the machine learning model. The result of the study revealed that the Extreme Gradient Boosting machine learning algorithm performed better than others.


Analysis of patient’s data is always a great idea to get accurate results on using classifiers. A combination of classifiers would give an accurate result than using a single classifier because one single classifier does not give accurate results but always appropriate ones. The aim is to predict the outcome feature of the data set. The “outcome” can contain only two values that is 0 and 1. 0 means patient doesn’t have heart disease and 1 means patient have heart diseases. So, there is a need to build a classification algorithm that can predict the Outcome feature of the test dataset with good accuracy. For this understanding the data is important, and then various classification algorithm can be tested. Then the best model can be selected which gives highest accuracy among all. The built model can then be given to the software developer for building the end user application using the selected machine learning model that will be able to predict the heart disease in a patient.


The major source of living for the people of India is agriculture. It is considered as important economy for the country. India is one of the country that suffer from natural calamities like drought and flood that may destroy the crops which may lead to heavy loss for the people doing agriculture. Predicting the crop type can help them to cultivate the suitable crop that can be cultivated in that particular soil type. Soil is one major factor or agriculture. There are several types of soil available in our county. In order to classify the soil type we need to understand the characteristics of the soil. Data mining and machine learning is one of the emerging technology in the field of agriculture and horticulture. In order to classify the soil type and Provide suggestion of fertilizers that can improve the growth of the crop cultivated in that particular soil type plays major role in agriculture. For that here exploring Several machine learning algorithms such as Support vector machine(SVM),k-Nearest Neighbour(k-NN) and logistic regression are used to classify the soil type.


Sign in / Sign up

Export Citation Format

Share Document