scholarly journals Electrical Properties of Pure and Modified Copper Tartrate Single Crystals

Author(s):  
Iqbal Quasim

The present paper reports the electrical properties of pure and sodium modified copper tartrate single crystals. Single crystal growth of these materials followed by their characteristics has already been published somewhere else. Having achieved the growth of pure and sodium modified copper tartrate single crystals and established their basic characteristics, it is thought worthwhile to have an understanding of their electrical properties and their modification on replacement of some copper ions in the lattice of copper tartrate by sodium ions. The electrical properties are studied by measuring electrical conductivity in the temperature range from 80 to 300 K. The study reveals that conductivity is a function temperature in these crystals. Moreover both pure and modified copper tatrate single crystal are semiconducting but the conductivity of pure modified copper tatrate single crystal is more than that of pure a copper tatrate single crystal. The results have been explained in terms variable range hopping model.

Author(s):  
Iqbal Quasim ◽  
Neeraj Gupta

Single crystals of tartrate compounds are of great interest on account of their excellent optoelectronic properties. These properties explore the possibility of tartrate compounds to be exploited for various device applications. This has attracted the attention of researchers to grow single crystals of tartrate compounds and study their properties. The present work reports the optical properties of pure and sodium modified copper tartrate single crystals. Single crystal growth of these materials followed by their characteristics has already been published somewhere else. Having achieved the growth of pure and sodium modified copper tartrate single crystals and established their basic characteristics, it is thought worthwhile to have an understanding of their optical properties and their modification on replacement of some copper ions in the lattice of copper tartrate by sodium ions.


2013 ◽  
Vol 634-638 ◽  
pp. 2485-2488
Author(s):  
Lin Wang ◽  
Zhen Ping Wu ◽  
Yu Cheng Jiang ◽  
Bing Ren ◽  
Jian Huang ◽  
...  

Thin films of perovskite manganite La0.9Hf0.1MnO3 (LHMO) have been grown on (100) SrTiO3 single-crystal substrates with different growth pressures by pulsed laser deposition. The different transport behaviors of films have been fitted by various models. The results clearly demonstrate that oxygen pressure is an efficient way to change the transport behaviors of LHMO films. All the transport behaviors observed in LHMO films can be better fitted by Mott’s variable range hopping model than the other two models.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


Author(s):  
Phan Gia Le ◽  
Huyen Tran Tran ◽  
Jong-Sook Lee ◽  
John G. Fisher ◽  
Hwang-Pill Kim ◽  
...  

AbstractCeramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 system exhibits a morphotropic phase boundary at x = 0.2–0.3, leading to high values of inverse piezoelectric constant d*33, which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1−xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature Ts and temperature of maximum relative permittivity Tmax, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior.


CrystEngComm ◽  
2015 ◽  
Vol 17 (13) ◽  
pp. 2682-2689 ◽  
Author(s):  
Pascal Schouwink ◽  
Adrien Ramel ◽  
Enrico Giannini ◽  
Radovan Černý

Single crystals of mixed-metal perovskite-type borohydride KCa(BH4)3 are prepared by using an easily generalized flux melting procedure based on eutectic borohydride systems.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2357 ◽  
Author(s):  
Le ◽  
Fisher ◽  
Moon

The (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 (NBT-100xST) system is a possible lead-free candidate for actuator applications because of its excellent strain vs. electric field behaviour. Use of single crystals instead of polycrystalline ceramics may lead to further improvement in piezoelectric properties but work on single crystal growth in this system is limited. In particular, the effect of composition on single crystal growth has yet to be studied. In this work, single crystals of (NBT-100xST) with x = 0.00, 0.05, 0.10 and 0.20 were grown using the method of Solid State Crystal Growth. [001]-oriented SrTiO3 single crystal seeds were embedded in (NBT-100xST) ceramic powder, which was then pressed to form pellets and sintered at 1200 °C for 5 min–50 h. Single crystal growth rate, matrix grain growth rate and sample microstructure were examined using scanning and transmission electron microscopy. The results indicate that the highest single crystal growth rate was obtained at x = 0.20. The mixed control theory of grain growth is used to explain the single crystal and matrix grain growth behaviour.


2020 ◽  
Vol 860 ◽  
pp. 142-147
Author(s):  
Suci Winarsih ◽  
Faisal Budiman ◽  
Hirofumi Tanaka ◽  
Tadashi Adachi ◽  
Takayuki Goto ◽  
...  

We report the results of the resistivity measurement on La2-xSrxCuO4 nanoparticles with x = 0, 0.05, and 0.20 evaluated by the four-point probe method. The high resistivity value shows the predominance of the inter-grain part. The temperature dependence of the conductivity can be analyzed by variable range hopping model showing the charge carriers are formed by thermal activation. There is no superconducting behavior that could be observed in La2-xSrxCuO4 nanoparticles with x = 0.05 and 0.20.


Sign in / Sign up

Export Citation Format

Share Document