scholarly journals Una aproximación volumétrica a la desagregación espacial de la población combinando cartografía temática y datos LIDAR

2016 ◽  
pp. 147 ◽  
Author(s):  
F. J. Goerlich

<p>Availability of high resolution population distribution data, independent of the administrative units in which demographic statistics are collected, is a real necessity in many fields: risk evaluation due to earthquakes, flooding or fires, to name just a few, integration between socio-demographic and environmental or geographical information collected in different formats, policy design for the provision public services, such as health, education or public transport, or mobility studies in urban areas or metropolitan regions. Because of this, the literature has explored various methods of population downscaling, collected at communality or census tract level, into smaller areas; typically urban polygons from high resolution topographic maps or land use/land cover databases, or grid cells, allowing the elaboration of raster population layers. A common feature of all these methods is that they do not incorporate building height. In this way, downscaling methods don´t distinguish between the urban sprawl type of settlement, where most of the houses are detached or semi-detached, and compact cities with high buildings. This paper examines error reduction in downscaling census tract population into 1×1 km and 1 ha grids, when we add the third dimension, building height from LIDAR remote sensing data. Algorithms used are simple, and based on areal weighting with or without auxiliary land use/land cover information, since our focus is not in fine turning algorithms, but in measuring improvements due to the missing dimension: building height. Our results indicate that improvements are noticeable. They are comparable to the ones obtained when we move from binary dasymetric methods to more general models combining densities for different land use/land cover types. Hence, adding the third dimension to population downscaling algorithms seems worth pursuing.</p>

2011 ◽  
Vol 4 (1) ◽  
pp. 33-45 ◽  
Author(s):  
G. A. Schmidt ◽  
J. H. Jungclaus ◽  
C. M. Ammann ◽  
E. Bard ◽  
P. Braconnot ◽  
...  

Abstract. Simulations of climate over the Last Millennium (850–1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.


Author(s):  
M. Kaur ◽  
S. Singh ◽  
V. K. Verma ◽  
B. Pateriya

Morphometric analysis is the measurement and mathematical analysis of the landforms. The delineation of drainage system is of utmost importance in understanding hydrological system of an area, water resource management and it's planning in an effective manner. Morphometric analysis and land use change detection of two sub-watersheds namely Kukar Suha and Ratewal of district Shahid Bhagat Singh Nagar, Punjab, India was carried out for quantitative description of drainage and characterisation. The stream order, stream number, stream length, mean stream length, and other morphometric analysis like bifurcation ratio, drainage density, texture, relief ratio, ruggedness number etc. were measured. The drainage pattern of Kukar Suha and Ratewal is mainly dendritic. The agriculture and settlements came up along the drainage network causes the pattern disturbance in the watershed. The study was undertaken to spotlight the morphometric parameters, their impact on the basin and the land use land cover changes occurred over the period of time. Morphometric parameters such as linear aspect, areal aspect and relief aspect of the watershed are computed. The land use/land cover change was extracted from LISS IV Mx + Cartosat1 PAN data. ASTER data is used to prepare DEM (digital elevation model) and geographical information system (GIS) was used to evaluate various morphometric parameters in ArcGIS10 software.


Author(s):  
H. Hashim ◽  
Z. Abd Latif ◽  
N. A. Adnan

Abstract. Recently the sensing data for urban mapping used is in high demand together with the accessible of very high resolution (VHR) satellite data such as Worldview and Pleiades. This article presents the use of very high resolution (VHR) remote sensing data for urban vegetation mapping. The research objectives were to assess the use of Pleiades imagery to extricate the data of urban vegetation in urban area of Kuala Lumpur. Normalized Difference Vegetation Index (NDVI) were employs with VHR data to find Vegetation Index for classification process of vegetation and non-vegetation classes. Land use classes are easily determined by computing their Normalized Difference Vegetation Index for Land use land cover classification. Maximum likelihood was conducted for the classification phase. NDVI were extracted from the imagery to assist the process of classification. NDVI method is use by referring to its features such as vegetation at different NDVI threshold values. The result showed three classes of land cover that consist of low vegetation, high vegetation and non-vegetation area. The accuracy assessment gained was then being implemented using the visual interpretation and overall accuracy achieved was 70.740% with kappa coefficient of 0.5. This study gained the proposed threshold method using NDVI value able to identify and classify urban vegetation with the use of VHR Pleiades imagery and need further improvement when apply to different area of interest and different land use land cover characteristics. The information achieved from the result able to help planners for future planning for conservation of vegetation in urban area.


Sign in / Sign up

Export Citation Format

Share Document