Pseudo-second-order kinetic models for the sorption of malachite green ontoTamarindus indicaseeds: Comparison of linear and non-linear methods

2011 ◽  
Vol 30 (1-3) ◽  
pp. 229-236 ◽  
Author(s):  
Shamik Chowdhury ◽  
Papita Saha
2011 ◽  
Vol 8 (s1) ◽  
pp. S363-S371 ◽  
Author(s):  
C. Theivarasu ◽  
S. Mylsamy

The removal of malachite green (MG) by cocoa (Theobroma cacao) shell activated carbon (CSAC) was investigated in present study. Adsorption studies were performed by batch experiments as a function of process parameters such as initial pH, contact time, initial concentration and adsorbent dose. A comparison of kinetic models applied to the adsorption of MG on CSAC was evaluated for the pseudo-first order and pseudo-second order kinetic models. Results showed that the pseudo-second order kinetic model was found to correlate the experimental data well. The experimental equilibrium adsorption data was represented with Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and Flory-Huggins isotherms. The experimental data obtained in the present study indicated that activated carbon developed from cocoa shell can be attractive options for dye removal from waste water.


Author(s):  
I. R. Ilaboya ◽  
O. C. Izinyon

Time dependent adsorption study on the sorption of Cr(III) and Mn(II) ions onto acid activated shale was conducted using batch adsorption techniques to investigate the effect of initial metal ion concentration on the process of adsorption. Experimental data obtained were fitted into different kinetic models to analyze the mechanism of adsorption in terms of reaction controlled and transport controlled mechanism. Some of the selected kinetic models include; Pseudo-first order, Pseudo-second order, Elovich, Film diffusion, Parabolic diffusion and Intra-particle diffusion model. From the result, it was observed based on the linear coefficient of determination (r2) that the experimental data fitted well into the various kinetic model tested. Application of non-linear error function such as error sum of square (SSE), root mean square error (RMSE) and residual average (RA) revealed that the rate limiting step for the adsorption of Cr3+ and Mn2+ ions on acid activated shale was chemical attachment (chemisorption) and the reaction mechanism follows the Pseudo-second order kinetic model.


2014 ◽  
Vol 16 (4) ◽  
pp. 676-689 ◽  

<div> <p>In the present study, batch adsorption studies were performed for the removal of malachite green and acid blue 161 dyes from aqueous solutions by varying parameters such as contact time, waste marble dust amount, initial dye concentration and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin adsorption isotherm models. The Langmuir and Freundlich adsorption models agree well with experimental data. The pseudo-second order, intraparticle intraparticle diffusion and Elovich kinetic models were applied to the experimental data in order to describe the removal mechanism of dye ions by waste marble dust. The pseudo-second order kinetic was the best fit kinetic model for the experimental data. Thermodynamics parameters such as Δ<em>G</em>, Δ<em>H</em> and Δ<em>S </em>were also calculated for the adsorption processes. The experimental data were used to construct an artificial neural network (ANN) model to predict removal of malachite green and acid blue 161 dyes by waste marble dust. A three-layer ANN, an input layer with four neurons, a hidden layer with 12 neurons, and an output layer with one neuron is constructed. Different training algorithms were tested on the model to obtain the proper weights and bias values for ANN model. The results show that waste marble dust is an efficient sorbent for malachite green dye and ANN network, which is easy to implement and is able to model the batch experimental system.</p> </div> <p>&nbsp;</p>


Author(s):  
O.T. Ogunmodede ◽  
O.L. Adebayo ◽  
A.A. Ojo

Natural clay has been considered as a potential absorbent for removing pollutants from water and waste water. Nonetheless, the effective application of clay for water treatment is limited due to small surface area and presence of net negative surface charge, leading to it low adsorption capacity. The absorption capacity was boosted via intercalation of CaO derived from snail shell (SS). The methylene blue sorption potential, PZC, and the surface area of unmodified clay sample were substantially enhanced by the intercalation process. The process of sorption of MB from solution was analyzed using five different isotherm models (Langmuir, Freundlich, Temkin, Harkins-Jura, and Halsey isotherm equations). The value of the Langmuir monolayer sorption capacity qm (mg/g) increased from 50.12 to 88.71, PZC values increased from 4.50 to 7.40, and the surface area (m2/g) value increased from 27 m2/g to 123 m2/g after the intercalation process. The experimental data were fitted into two kinetic models: Lagergren pseudo-first order and the chemisorptions pseudo-second order. It was observed that chemisorptions pseudo-second order kinetic model described the sorption process with high coefficients of determination (r2) better than pseudo first other kinetic models. The modification caused no change in the clay surficial microstructure but increased the lattice spacing of the clay framework.


2021 ◽  
Author(s):  
Vani Gandham ◽  
UMA Addepally ◽  
Bala Narsaiah T

Abstract Malachite Green (MG), a cationic synthetic dye is considered hazardous when discharged into the water bodies without any adequate treatment. It can affect the multiple segments of the environment leading to irreversible persistent changes. So, there is a need for remediation with cost-effective method to remove dyes from effluents. Adsorption is one such technique to remove dyes from wastewater and is effective and economical. The present study describes the removal of MG cationic dye from wastewater using eco-friendly and biodegradable lignin extracted from hydrothermally treated rice straw by adsorption process. Functional group analysis and morphological characterisation was done to the extracted lignin after quantification. The maximum percent removal of MG 92 ± 0.2 % was observed from a series of batch experiments at optimum process parameters of: contact time 80 min, initial dye concentration 50 ppm, lignin dosage 0.25g, pH 7, temperature 300c and with 100 rpm agitation speed. The adsorption kinetics and isotherms were determined for the experimental data using four kinetic models (pseudo-first-order, second order, pseudo-second-order and intra-particle diffusion model) and two isotherm models (Langmuir and Freundlich). The results suggested that the kinetics data fit to the pseudo-second-order kinetic model with the maximum adsorption capacity 36.7 mg/g and the two isotherm models were applicable for the adsorption of MG onto the lignin. Additionally, the thermodynamic parameters ΔSo, ΔHo and ΔGo were evaluated. Therefore, lignin which is an environmental friendly and low cost carbon material that can be used as an adsorbent for dye removal.


Sign in / Sign up

Export Citation Format

Share Document