scholarly journals Removal of Malachite Green from Aqueous Solution by Activated Carbon Developed from Cocoa (Theobroma Cacao) Shell - A Kinetic and Equilibrium Studies

2011 ◽  
Vol 8 (s1) ◽  
pp. S363-S371 ◽  
Author(s):  
C. Theivarasu ◽  
S. Mylsamy

The removal of malachite green (MG) by cocoa (Theobroma cacao) shell activated carbon (CSAC) was investigated in present study. Adsorption studies were performed by batch experiments as a function of process parameters such as initial pH, contact time, initial concentration and adsorbent dose. A comparison of kinetic models applied to the adsorption of MG on CSAC was evaluated for the pseudo-first order and pseudo-second order kinetic models. Results showed that the pseudo-second order kinetic model was found to correlate the experimental data well. The experimental equilibrium adsorption data was represented with Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and Flory-Huggins isotherms. The experimental data obtained in the present study indicated that activated carbon developed from cocoa shell can be attractive options for dye removal from waste water.

2014 ◽  
Vol 16 (4) ◽  
pp. 676-689 ◽  

<div> <p>In the present study, batch adsorption studies were performed for the removal of malachite green and acid blue 161 dyes from aqueous solutions by varying parameters such as contact time, waste marble dust amount, initial dye concentration and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Temkin adsorption isotherm models. The Langmuir and Freundlich adsorption models agree well with experimental data. The pseudo-second order, intraparticle intraparticle diffusion and Elovich kinetic models were applied to the experimental data in order to describe the removal mechanism of dye ions by waste marble dust. The pseudo-second order kinetic was the best fit kinetic model for the experimental data. Thermodynamics parameters such as Δ<em>G</em>, Δ<em>H</em> and Δ<em>S </em>were also calculated for the adsorption processes. The experimental data were used to construct an artificial neural network (ANN) model to predict removal of malachite green and acid blue 161 dyes by waste marble dust. A three-layer ANN, an input layer with four neurons, a hidden layer with 12 neurons, and an output layer with one neuron is constructed. Different training algorithms were tested on the model to obtain the proper weights and bias values for ANN model. The results show that waste marble dust is an efficient sorbent for malachite green dye and ANN network, which is easy to implement and is able to model the batch experimental system.</p> </div> <p>&nbsp;</p>


2017 ◽  
Vol 23 (4) ◽  
pp. 447-456
Author(s):  
Rahim Shojaat ◽  
Afzal Karimi ◽  
Naghi Saadatjoo ◽  
Soheil Aber

In the present study, GOx/MnFe2O4/calcium alginate nano-composite was prepared by the trapping enzyme/nanoparticles in calcium alginate. The prepared absorbent was applied for decolorization of artificial dye wastewater of acid red 14 (AR14) by heterogeneous bio-Fenton system. Kinetic and isotherm studies were carried out. The decolorization of acid red 14 followed the Michaelis- Menten, pseudo-first order and pseudo-second order kinetic models. Good correlation coefficients were obtained by fitting the experimental data to Michaelis- Menten and pseudo-second order kinetic models. The adsorption isotherms were described by Langmuir, Freundlich and Temkin isotherms. Among the three isotherm models, the Freundlich model was fitted with the equilibrium data obtained from adsorption of AR14 onto MnFe2O4/calcium alginate; while Temkin isotherm gave the best correlation for adsorption on MnFe2O4 nanoparticles. The effect of various parameters such as initial pH of solution, initial dye concentration, and contact time on the adsorption of AR14 on MnFe2O4 and MnFe2O4/ /calcium alginate as well as dye enzymatic decomposition was studied. The decolorization of AR14 with initial concentration of 10 mg.L?1 by using GOx/ /MnFe2O4/calcium alginate was 60.17%.


Author(s):  
E. S. Isagba ◽  
S. Kadiri ◽  
I. R. Ilaboya

This paper investigated the use of yam peel as a natural adsorbent for the removal of Copper (Cu) and Manganese (Mn) from waste water. The yam peels were thoroughly washed with distilled water, dried, pulverized and carbonized. The carbonized yam peel was then characterized for its particle sizes, moisture content, ash content, volatile matter, Methylene Blue number, Iodine number. The raw yam peels were prepared using the same procedure, but was not carbonized. The adsorption of Mn(II) and Cu(II) ions were investigated using adsorption experiment at room temperature. The effect of contact time, metal ion concentration and dosage were evaluated. The residual concentrations of the metal ions were determined by Atomic Absorption Spectrophotometer (AAS). Experimental data obtained were analyzed using Kinetic models and Isotherms such as Pseudo- First order kinetic models, Pseudo-second order kinetic models, Langmuir isotherms and Freundlich isotherm. The analysis showed that the pseudo-second order kinetic model best described the adsorption of the metal ions; ( Cu; r2 = 0.991 for RYP and r2 = 0.834 for AYP) and (Mn; r2 = 0.958 for RYP and r2 = 0.896 for AYP) and the experimental data best fit the Freundlich model; (Cu; r2 = 0.564 for RYP and r2 = 0.871 for AYP) and (Mn; r2 = 0.685 for RYP and r2 = 0.736 for AYP). Finally, optimum removal efficiencies of 30.54% for Mn(II) and 39.62% for Cu(II) were obtained for AYP at concentrations of 50mg/l and mass dosage of 1.0g, 120 minutes contact time and a pH of 6.8.


Author(s):  
I. R. Ilaboya ◽  
O. C. Izinyon

Time dependent adsorption study on the sorption of Cr(III) and Mn(II) ions onto acid activated shale was conducted using batch adsorption techniques to investigate the effect of initial metal ion concentration on the process of adsorption. Experimental data obtained were fitted into different kinetic models to analyze the mechanism of adsorption in terms of reaction controlled and transport controlled mechanism. Some of the selected kinetic models include; Pseudo-first order, Pseudo-second order, Elovich, Film diffusion, Parabolic diffusion and Intra-particle diffusion model. From the result, it was observed based on the linear coefficient of determination (r2) that the experimental data fitted well into the various kinetic model tested. Application of non-linear error function such as error sum of square (SSE), root mean square error (RMSE) and residual average (RA) revealed that the rate limiting step for the adsorption of Cr3+ and Mn2+ ions on acid activated shale was chemical attachment (chemisorption) and the reaction mechanism follows the Pseudo-second order kinetic model.


2017 ◽  
Vol 24 (1) ◽  
pp. 87-106 ◽  
Author(s):  
Sayiter Yildiz

Abstract In the work, adsorption of Cu2+ ions onto almond shell were investigated under different operational conditions. Almond shell was used without any pretreatment prior to the tests. The optimum conditions for adsorption of Cu2+ ions through almond shell were determined to be; pH 5.0, temperature 20°C, shaking rate 125 rpm, sorbent dose 0.3 g and initial Cu2+ ion concentration 50 mg/dm3. The equilibrium duration of the system was 60 minutes. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The interactions of peanut shell with metal ions were constituted by SEM, EDX, FT-IR, XRD and AFM. The pseudo-first-order, pseudo-second-order, Weber-Morris, Elovich model and Bangham kinetic models were applied to test the experimental data. The Cu+2 ions adsorption onto almond shell was better defined by the pseudo-second-order kinetic model, for initial pH. The equilibrium data were evaluated using Langmuir, Freundlich, Temkin, D-R and Harkins Jura isotherms. The highest R2 value in isotherm studies was obtained from Langmiur isotherm (R2 = 0.98) for the inlet concentration.


2011 ◽  
Vol 64 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Yao Chen ◽  
Wenju Jiang ◽  
Li Jiang ◽  
Xiujuan Ji

Activated carbon was developed from sewage sludge using pyrolusite as an additive. It was demonstrated that the removal efficiency of two synthetic dyes (Tracid orange GS and Direct fast turquoise blue GL) by the produced adsorbent was up to 97.6%. The activated carbon with pyrolusite addition had 38.2% higher surface area, 43.8% larger micropore and 54.4% larger mesopore production than ordinary sludge-based activated carbons. Equilibrium adsorption isotherms and kinetics were also investigated based on dyes adsorption tests. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption, and the results fitted well to the Langmuir isotherm. The kinetic data have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equation. The experimental data fitted very well with pseudo-second-order kinetic model. Activation energies for the adsorption processes ranged between 8.7 and 19.1 kJ mol−1. Thermodynamic parameters such as standard free energy (ΔG0), standard enthalpy (ΔH0) and standard entropy (ΔS0) were evaluated. The adsorption of these two dyes on the activated carbon was found to be a spontaneous and endothermic process in nature.


2011 ◽  
Vol 80-81 ◽  
pp. 421-425
Author(s):  
Li Fang Zhang ◽  
Ying Ying Chen ◽  
Shu Juan Dai

In this study, the biosorption of Malachite Green, a cationic dye from aqueous solution onto pretreated biomass of Penicilium sp. was examined. The biosorption studies were carried out under various parameters such as initial pH, contact time and initial dye concentration. The experimental results show that optimum pH for efficient dye biosorption was found to be 5.0-6.0 for pretreated biomass. The bosorption capacity was increased with the increasing initial dye concentration in studied dye concentration range. The kinetic data obtained at different concentrations were analyzed using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. It was obtained that the biosorption process followed the pseudo-second-order kinetic model.


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


Sign in / Sign up

Export Citation Format

Share Document