An Assembly for Electrochemical Corrosion Studies in Aqueous Environments at High Temperature and Pressure

CORROSION ◽  
1967 ◽  
Vol 23 (11) ◽  
pp. 331-334 ◽  
Author(s):  
B. E. WILDE

Abstract An assembly is described, in which electrochemical corrosion measurements can be carried out in aqueous environments up to 314 C (598 F) and 105.5 kg/cm2. Test specimen mounting and corrosive environment containment procedures are discussed. A techniqie for using a high pressure electrolyte bridge with an external reference electrode is described. The performance of the system is demonstrated by potentiostatic anodic, cathodic and linear polarization experiments carried out on AISI Type 304 steel in dilute chloride solutions at 289 C.

CORROSION ◽  
1969 ◽  
Vol 25 (12) ◽  
pp. 515-519 ◽  
Author(s):  
W. D. HENRY ◽  
B. E. WILDE

Abstract Statistical alloy development programs in which electrochemical screening techniques are used require facilities to produce precision polarization data. Conventional equipment and techniques presently available for such programs are not entirely satisfactory. Therefore, modifications were made to readily available commercial equipment to significantly improve the attainable sensitivity and reproducibility. This paper describes in detail the procedures necessary to produce an apparatus that automatically measures and records anodic and cathodic polarization curves over an applied potential range of ±2.0 volts. Traverse rates between 2 × 10−3 and 3 × 104 volts per hour are attainable and can be used to polarize electrodes through zero volts (with respect to reference electrode) without the necessity of manual switching. A special mode switch is described in detail with which the basic electronic potentiostat can be used as a constant current or constant voltage source by manual selection. The results obtained from three typical polarization experiments: (1) potentiodynamic anodic polarization, (2) galvanodynamic cathodic polarization, and (3) galvanodynamic linear polarization of AISI Type 304 stainless steel in hydrogen saturated 1N H2SO4 at 25 C (77 F), showed the performance of the apparatus to be equal to or superior to that of conventional manual procedures.


Alloy Digest ◽  
1975 ◽  
Vol 24 (2) ◽  

Abstract USS 18-8S (AISI Type 304) and USS 18-8I (AISI Type 304L) are austenitic chromium-nickel steels that are easy to fabricate and weld. They combine high strength with excellent stability and shock resistance, even at cryogenic temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-305. Producer or source: United States Steel Corporation.


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract AISI Type 308 is an austenitic chromium nickel steel with corrosion and heat resistance superior to Type 304. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-140. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1978 ◽  
Vol 27 (3) ◽  

Abstract TECH-TRONIC 32 stainless steel is essentially a low-nickel chromium-manganese austenitic iron-base alloy. In the annealed condition it provides about twice the yield strength of AISI Type 304 stainless steel and almost the same resistance to corrosion. It also offers improved wear and galling resistance over standard stainless steels. TECH-TRONIC 32 can be cold worked to high strength levels with retention of good ductility. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-348. Producer or source: Techalloy Company Inc..


Alloy Digest ◽  
1983 ◽  
Vol 32 (6) ◽  

Abstract EASTERN STAINLESS TYPE 304L is the basic 18-8 chromium-nickel austenitic stainless steel with a very low carbon content (0.03% max.). Its general resistance to corrosion is similar to AISI Type 304 but, because of its low carbon content, it has superior resistance to the formation of harmful carbides that indirectly contribute to intergranular corrosion. It is recommended for most articles of welded construction. Postweld annealing is not necessary. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-427. Producer or source: Eastern Stainless Steel Company.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 546
Author(s):  
Mateusz Ciszewski ◽  
Andrzej Chmielarz ◽  
Zbigniew Szołomicki ◽  
Michał Drzazga ◽  
Katarzyna Leszczyńska-Sejda

Industrial processing of mineral ores and concentrates generates large amounts of solid residues, which can be landfilled or further processed to recover selected elements depending on its economical profitability. Pressure leaching is a technology enabling high recovery of base metals like copper and zinc, transferring others like lead and iron to the solid residue. High temperature and pressure of such leaching leads to formation of sparingly soluble lead jarosite (plumbojarosite). The load of lead landfilled as solid residues resulting from such operation is so big that its recovery is perspective and crucial for waste-limiting technologies. This paper is devoted to lead extraction from pressure leaching residues using triethylenetetramine solution and then its precipitation as a commercial lead carbonate. The highest obtained recovery of lead was 91.3%. Additionally, presented technology allows to manage and recycle amine solution and reuse solid products. Produced pure lead carbonate can be directly added to smelting, not increasing temperature within the furnace.


Sign in / Sign up

Export Citation Format

Share Document