scholarly journals Geothermal flux and phreatic speleogenesis in gypsum, halite, and quartzite rocks

2018 ◽  
Vol 47 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Giovanni Badino ◽  
Keyword(s):  
1984 ◽  
Vol 21 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Sam G. Collins ◽  
David E. Thompson

Temperature measurements in a subpolar surge-type glacier reveal a distinctive thermal structure associated with the boundary between the ice reservoir and receiving areas. In the receiving area the glacier is cold based, but bottom temperature has increased as much as 0.5 °C between 1981 and 1982, and the basal heat flux is roughly 10 times the expected geothermal flux. Water percolation through permeable subglacial material is the probable energy source. Deformation of the substrate could destroy this drainage system and trigger a surge.


2014 ◽  
Vol 55 (67) ◽  
pp. 127-137 ◽  
Author(s):  
Benjamin A. Keisling ◽  
Knut Christianson ◽  
Richard B. Alley ◽  
Leo E. Peters ◽  
John E.M. Christian ◽  
...  

AbstractWe analyze the internal stratigraphy in radio-echo sounding data of the northeast Greenland ice stream to infer past and present ice dynamics. In the upper reaches of the ice stream, we propose that shear-margin steady-state folds in internal reflecting horizons (IRHs) form due to the influence of ice flow over spatially varying basal lubrication. IRHs are generally lower in the ice stream than outside, likely because of greater basal melting in the ice stream from enhanced geothermal flux and heat of sliding. Strain-rate modeling of IRHs deposited during the Holocene indicates no recent major changes in ice-stream vigor or extent in this region. Downstream of our survey, IRHs are disrupted as the ice flows into a prominent overdeepening. When combined with additional data from other studies, these data suggest that upstream portions of the ice stream are controlled by variations in basal lubrication whereas downstream portions are confined by basal topography.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 484
Author(s):  
Anatoly Gavrilov ◽  
Valentina Malakhova ◽  
Elena Pizhankova ◽  
Alexandra Popova

By using thermal mathematical modeling for the time range of 200,000 years ago, the authors have been studying the role the glaciation, covered the De Long Islands and partly the Anjou Islands at the end of Middle Neopleistocene, played in the formation of permafrost and gas hydrates stability zone. For the modeling purpose, we used actual geological borehole cross-sections from the New Siberia Island. The modeling was conducted at geothermal flux densities of 50, 60, and 75 mW/m2 for glacial and extraglacial conditions. Based on the modeling results, the glaciated area is characterized by permafrost thickness of 150–200 m lower than under extraglacial conditions. The lower boundary of the gas hydrate stability zone in the glacial area at 50–60 mW/m2 is located 300 m higher than the same under extraglacial conditions. At 75 mW/m2 in the area of 20–40 m isobaths, open taliks are formed, and the gas hydrate stability zone was destroyed in the middle of the Holocene. The specified conditions and events were being formed in the course of the historical development of the glacial area with a predominance of the marine conditions peculiar to it from the middle of the Middle Neopleistocene.


1989 ◽  
Vol 12 ◽  
pp. 138-144 ◽  
Author(s):  
Catherine Ritz

The temperature profile measured in the Vostok bore hole is analysed. The temperature distribution in polar ice sheets depends mainly on past surface temperature, geothermal flux, and accumulation rate. In the present work, the heat equation is solved both for ice and for the underlying bedrock. The Vostok ice core offers a 160 000 year climatic record which is used to define the past surface temperature, while accumulation-rate variations are assumed to be governed by the saturation vapour pressure. The model is run for a number of different sets of parameters in order to find the parameter associations giving a good fit between the observed and the computed temperature profiles. With this model, it is possible to simulate the measured temperature profile within 0.1°C. To obtain this good fit, geothermal flux has to be higher than 50 mW/m2 and present-day accumulation rate must be lower than 2.6 cm/year. Sensitivity of these results both to the amplitude of surface-temperature change and to the velocity profile with depth is also investigated. Finally, it is shown that ice is at the melting point at the base of the ice sheet, which is in agreement with the presence of a subglacial lake near Vostok Station.


2014 ◽  
Vol 111 (25) ◽  
pp. 9070-9072 ◽  
Author(s):  
D. M. Schroeder ◽  
D. D. Blankenship ◽  
D. A. Young ◽  
E. Quartini

2004 ◽  
Vol 39 ◽  
pp. 67-72 ◽  
Author(s):  
Frédérique Remy ◽  
Benoît Legresy

AbstractDeep beneath the thick ice cover of the Antarctic continent there exist subglacial hydrological networks, within which basal meltwater can flow. In this paper, we use surface elevation data from European Remote-sensing Satellite radar altimetry to map these subglacial hydrological networks for the whole continent. We observe a confused pattern of subglacial systems, linking regions where basal melting takes place. In some regions, channels can be followed over some hundreds of kilometres. Some of these meet the ice-sheet margin, suggesting that meltwater can be transported all the way to the ocean. We observe an east–west gradient in the distribution of hydrological networks that could be explained by the geothermal flux pattern.


2017 ◽  
Author(s):  
Frédéric Parrenin ◽  
Marie G. P. Cavitte ◽  
Donald D. Blankenship ◽  
Jérome Chappellaz ◽  
Hubertus Fischer ◽  
...  

Abstract. Ice sheets provide exceptional archives of past changes in polar climate, regional environment and global atmospheric composition. The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800,000 years. Obtaining an older paleoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we use internal isochrones, identified from airborne radar coupled to ice-flow modelling to estimate the age of basal ice along transects in the Dome C area. Three glaciological properties are inverted from isochrones: surface accumulation rate; geothermal flux; and the exponent of the Lliboutry velocity profile. We find that old ice (> 1 Myr, 1 million years) likely exists in two regions: one ~ 40 km south-west of Dome C along the ice divide to Vostok, close to a secondary dome that we name "Little Dome C" (LDC); and a second region named "North Patch" (NP) located 10–30 km north-east of Dome C, in a region where the geothermal flux is apparently relatively low. Our work demonstrates the value of combining radar observations with ice flow modelling to accurately represent the true nature of ice flow, and the formation of ice-sheet architecture, in the centre of large ice sheets.


Sign in / Sign up

Export Citation Format

Share Document