scholarly journals Subglacial hydrological networks in Antarctica and their impact on ice flow

2004 ◽  
Vol 39 ◽  
pp. 67-72 ◽  
Author(s):  
Frédérique Remy ◽  
Benoît Legresy

AbstractDeep beneath the thick ice cover of the Antarctic continent there exist subglacial hydrological networks, within which basal meltwater can flow. In this paper, we use surface elevation data from European Remote-sensing Satellite radar altimetry to map these subglacial hydrological networks for the whole continent. We observe a confused pattern of subglacial systems, linking regions where basal melting takes place. In some regions, channels can be followed over some hundreds of kilometres. Some of these meet the ice-sheet margin, suggesting that meltwater can be transported all the way to the ocean. We observe an east–west gradient in the distribution of hydrological networks that could be explained by the geothermal flux pattern.

2003 ◽  
Vol 37 ◽  
pp. 252-256 ◽  
Author(s):  
Frédérique Rémy ◽  
Laurent Testut ◽  
Benoît Legrésy ◽  
Alessandro Forieri ◽  
Cesido Bianchi ◽  
...  

AbstractPrecise topography from European Remote-sensing Satellite radar altimetry and high density of airborne radio-echo sounding in the area surrounding Dome C, Antarctica, show a link between surface features and subglacial lakes. In this paper, we extend the study to fine structures by computing a curvature-based coefficient (cy) related to surface undulations. These coefficient variations reveal many surface undulations, and some elongated features of this parameter seem to link known subglacial lakes. A population of high values of this coefficient, assumed to correspond to transitions between sliding and non-sliding flow regime, strengthen the appearance of a network which would link most of the lakes in the area. The existence of such a network impacts on ice-flow dynamics and on subglacial-lake studies.


1998 ◽  
Vol 44 (147) ◽  
pp. 197-206 ◽  
Author(s):  
Benoît Legrésy ◽  
Frédérique Rémy

AbstractThe problem of measuring surface height and snowpack characteristics from satellite radar altimeter echoes is investigated. In this paper, we perform an analysis of the ERS1 altimeter dataset acquired during a 3 day repeat orbit. The analysis reveals that there are temporal variations in shapes of the radar altimeter echo and that these variations are linked to meteorological phenomena. The time- and space-scales over which these variations apply are a few to tens of days and a few hundred kilometres, respectively. This phenomenon, if not accounted for, can create error in the height measurement. A numerical echo model is used to recover snowpack characteristics by taking advantage of the temporal variations of the radar echoes. A map of penetration depth of the radar waves in the Ku band over the Antarctic continent is obtained and suggests that grain-size produces the dominant effect on radar extinction in the snowpack at this frequency. Finally, a procedure is proposed to correct the height measurement within the context of ice-sheet mass-balance survey.


2014 ◽  
Vol 55 (67) ◽  
pp. 127-137 ◽  
Author(s):  
Benjamin A. Keisling ◽  
Knut Christianson ◽  
Richard B. Alley ◽  
Leo E. Peters ◽  
John E.M. Christian ◽  
...  

AbstractWe analyze the internal stratigraphy in radio-echo sounding data of the northeast Greenland ice stream to infer past and present ice dynamics. In the upper reaches of the ice stream, we propose that shear-margin steady-state folds in internal reflecting horizons (IRHs) form due to the influence of ice flow over spatially varying basal lubrication. IRHs are generally lower in the ice stream than outside, likely because of greater basal melting in the ice stream from enhanced geothermal flux and heat of sliding. Strain-rate modeling of IRHs deposited during the Holocene indicates no recent major changes in ice-stream vigor or extent in this region. Downstream of our survey, IRHs are disrupted as the ice flows into a prominent overdeepening. When combined with additional data from other studies, these data suggest that upstream portions of the ice stream are controlled by variations in basal lubrication whereas downstream portions are confined by basal topography.


2013 ◽  
Vol 9 (3) ◽  
pp. 2859-2887 ◽  
Author(s):  
B. Van Liefferinge ◽  
F. Pattyn

Abstract. Finding suitable potential sites for an undisturbed record of million-year old ice in Antarctica requires a slow-moving ice sheet (preferably an ice divide) and basal conditions that are not disturbed by large topographic variations. Furthermore, ice should be thick and cold basal conditions should prevail, since basal melting would destroy the bottom layers. However, thick ice (needed to resolve the signal at sufficient high resolution) increases basal temperatures, which is a conflicting condition in view of finding a suitable drill site. In addition, slow moving areas in the center of ice sheets are also low-accumulation areas, and low accumulation reduces potential cooling of the ice through vertical advection. While boundary conditions such as ice thickness and accumulation rates are relatively well constraint, the major uncertainty in determining basal conditions resides in the geothermal heat flow (GHF) underneath the ice sheet. We explore uncertainties in existing GHF datasets and their effect on basal temperatures of the Antarctic ice sheet and propose an updated method based on Pattyn (2010) to improve existing GHF datasets in agreement with known basal temperatures and their gradients to reduce this uncertainty. Both complementary methods lead to a better comprehension of basal temperature sensitivity and a characterization of potential ice coring sites within these uncertainties.


2020 ◽  
Vol 14 (6) ◽  
pp. 2071-2086 ◽  
Author(s):  
Geoffrey J. Dawson ◽  
Jonathan L. Bamber

Abstract. We present the results of mapping the limit of the tidal flexure (point F) and hydrostatic equilibrium (point H) of the grounding zone of Antarctic ice shelves from CryoSat-2 standard and swath elevation data. Overall we were able to map 31 % of the grounding zone of the Antarctic floating ice shelves and outlet glaciers. We obtain near-complete coverage of the Filchner–Ronne Ice Shelf. Here we manage to map areas of Support Force Glacier and the Doake Ice Rumples, which have previously only been mapped using break-in-slope methods. Over the Ross Ice Shelf, Dronning Maud Land and the Antarctic Peninsula, we obtained partial coverage, and we could not map a continuous grounding zone for the Amery Ice Shelf and the Amundsen Sea sector. Tidal amplitude and distance south (i.e. across-track spacing) are controlling factors in the quality of the coverage and performance of the approach. The location of the point F agrees well with previous observations that used differential satellite radar interferometry (DInSAR) and ICESat-1, with an average landward bias of 0.1 and 0.6 km and standard deviation of 1.1 and 1.5 km for DInSAR and ICESat measurements, respectively. We also compared the results directly with DInSAR interferograms from the Sentinel-1 satellites, acquired over the Evans Ice Stream and the Carlson Inlet (Ronne Ice Shelf), and found good agreement with the mapped points F and H. We also present the results of the spatial distribution of the grounding zone width (the distance between points F and H) and used a simple elastic beam model, along with ice thickness calculations, to calculate an effective Young modulus of ice of E=1.4±0.9 GPa.


2021 ◽  
Author(s):  
Catherine Ritz ◽  
Christophe Dumas ◽  
Marion Leduc-Leballeur ◽  
Giovanni Macelloni ◽  
Ghislain Picard ◽  
...  

<p><span>Ice temperature within the ice is a crucial characteristic to understand the Antarctic ice sheet evolution because temperature is coupled to ice flow. Since temperature is only measured at few locations in deep boreholes, we only rely on numerical modelling to assess ice sheet-wide temperature. However, the design of such models leads to a number of challenges. One important difficulty is that the temperature field strongly depends on the geothermal flux which is still poorly known (see White paper by Burton-Johnson and others,2020 </span><span></span><span>). Another point is that up to now there is no fully suitable model, especially for inverse approaches: i</span><span>)</span><span> analytical solutions are only valid in slowly flowing regions; ii</span><span>)</span><span> models solving only the heat equation by prescribing geometry and ice flow do not take into account the past changes in ice thickness and ice flow and </span><span>do not couple </span><span>ice flow and temperature. Conversely, 3D thermomechanical models that simulate the evolution of the ice sheet take into account all the relevant processes but they are too computationally expensive to be used in inverse approaches. Moreover, they do not provide a perfect fit between observed and simulated geometry </span><span>(ice thickness, surface elevation) </span><span>for the present-day ice sheets </span><span>and this affects the simulated temperature field</span><span>.</span></p><p><span>GRISLI (Quiquet et al. 2018), belongs to this family of thermomechanically coupled ice sheet models An emulator, based on deep neural network (DNN), has been developed in order to speed-up the simulation of present-day ice temperature. We use GRISLI outputs that come from 4 simulations, each covers 900000 years (8 glacial-interglacial cycles) to get rid of the initial configuration influence. The simulations differ by the geothermal flux map used as boundary condition. Finally a database is built where each ice column for each simulation is a sample used to train the DNN. For each sample, the input layer (precursor) is a vector of the present-day characteristics: ice thickness, surface temperature, geothermal flux, accumulation rate, surface velocity and surface slope. The predicted output (output layer) is the vertical profile of temperature. In the training, the weights of the network are optimized by comparison with the GRISLI temperature. </span></p><p><span>The first results are very encouraging with a RMSE of ~ 0.6 °C (calculated from the difference between the emulated temperatures and GRISLI temperatures over all the samples and all the depths). Once trained, the computational time of GRISLI-DNN for generating temperature field of whole Antarctica (16000 columns) is about 20 s.</span></p><p><span>The first application (in the framework of the ESA project 4D-Antarctica, see Leduc-Leballeur<span> presentation in this session</span>) will be to use this emulator associated with SMOS satellite observations to infer the 3D temperature field and improve our knowledge of geothermal flux. Indeed, it has been shown that SMOS data, coupled with glaciological and electromagnetic models, give an indication of temperature in the upper 1000 m of the ice sheet. Our emulator could also be used for initialization of computationally expensive ice sheet models.</span></p>


Author(s):  
D.J Wingham ◽  
A Shepherd ◽  
A Muir ◽  
G.J Marshall

The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992–2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range −5–+85 Gt yr −1 . We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend—growth of 27±29 Gt yr −1 —is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.


2002 ◽  
Vol 34 ◽  
pp. 315-322 ◽  
Author(s):  
Sverrir Gudmundsson ◽  
Magnus Tumi Gudmundsson ◽  
Helgi Björnsson ◽  
Freysteinn Sigmundsson ◽  
Helmut Rott ◽  
...  

AbstractWe use topographically corrected interferograms, repeated global positioning system observations of locations of stakes and time series of elevation data to produce time series of high-resolution three-dimensional (3-D) ice surface motion maps for the infilling of the ice depression created by the 1996 subglacial eruption at the Gjálp volcano in Vatnajökull, Iceland. The ice inflow generated uplift in the central parts of the depression. During the first months, the uplift was much reduced by basal melting as the subglacial volcano cooled. For those motions surface-parallel ice flow cannot be assumed. The 3-D motion maps are created by an optimization process that combines the complementary datasets. The optimization is based on a Markov random-field regularization and a simulated annealing algorithm. The 3-D motion maps show the pattern of gradually diminishing ice flow into the depression. They provide a consistent picture of the 3-D motion field, both spatially and with time, which cannot be seen by separate interpretation of the complementary observations. The 3-D motion maps were used to calculate the cooling rate of the subglacial volcano for the first year after the eruption. First an uplift rate resulting solely from the inflow of ice was calculated from inferred horizontal motions. Basal melting was then estimated as the difference between the calculated uplift generated by the inflow of ice, and the observed uplift that was the combined result of ice inflow and basal melting. The basal melting was found to decline from 55 m3 s–1 (due to power of 18 GW) in January 1997 to 5 m3 s–1 (2GW) in October 1997.


2020 ◽  
Vol 61 (81) ◽  
pp. 206-213 ◽  
Author(s):  
Cooper W. Elsworth ◽  
Dustin M. Schroeder ◽  
Matthew R. Siegfried

AbstractFast ice flow on the Antarctic continent constitutes much of the mass loss from the ice sheet. However, geophysical methods struggle to constrain ice flow history at depth, or separate the signatures of topography, ice dynamics and basal conditions on layer structure. We develop and demonstrate a methodology to compare layer signatures in multiple airborne radar transects in order to characterize ice flow at depth, or improve coverage of existing radar surveys. We apply this technique to generate synthetic, along-flow radargrams and compare different deformation regimes to observed radargram structure. Specifically, we investigate flow around the central sticky spot of Whillans Ice Stream, West Antarctica. Our study suggests that present-day velocity flowlines are insufficient to characterize flow at depth as expressed in layer geometry, and streaklines provide a better characterization of flow around a basal sticky spot. For Whillans Ice Stream, this suggests that ice flow wraps around the central sticky spot, supported by idealized flow simulations. While tracking isochrone translation and rotation across survey lines is complex, we demonstrate that our approach to combine radargram interpretation and modeling can reveal critical details of past ice flow.


Sign in / Sign up

Export Citation Format

Share Document