scholarly journals Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack

Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


2015 ◽  
Vol 759 ◽  
pp. 37-44
Author(s):  
Mateusz Romaszko ◽  
Łukasz Łacny

In this study the analysis of the magnetic field distribution of an electromagnet is presented. This electromagnet is used as an actuator in a semi-active vibration control of the three-layer beam with MR fluid. Two separate numerical methods are used for the purpose of calculating the magnetic field distribution. The first method is based on the Finite Element Method and implemented using ANSYS software. The second, simplified one is based on the assumption that the electromagnet can be substituted by a simple magnetic circuit divided into separate paths, with each sub-path defined by the value of reluctance of the corresponding electromagnet part. The comparison of the results from both methods with the ones obtained from an experiment is also presented and analyzed in the paper.


2011 ◽  
Vol 52-54 ◽  
pp. 358-364
Author(s):  
Jong Seok Oh ◽  
Seung Bok Choi

In this paper, vibration control performance of piezostack active engine mount system for unmanned aero vehicle (UAV) is evaluated via computer simulation. As a first step, the dynamic model of engine mount system which is supported at three points is derived. In the configuration of engine mount system, the inertia type of piezostack based active mount is installed for active vibration control. Then, the vibration level of UAV engine is measured. To attenuate the vibration which is transmitted from engine, a sliding mode controller which is robust to uncertain parameters is designed. Vibration control performances of active engine mount system are evaluated at each mount and center of gravity. Effective Control results are presented in both time and frequency domains.


Author(s):  
V. Fakhari ◽  
H. A. Talebi ◽  
A. R. Ohadi

In this study, the effectiveness of an active engine mount in vibration suppression of a four-cylinder V-shaped engine is evaluated. In this regard, a 6 degree of freedom engine model under inertia and balancing mass forces and torques is considered. At first, the governing equations of motion of engine supported by three rubber mounts are presented. Subsequently, one of the rubber mounts is replaced by an active mount and the effectiveness of active mount, in the presence of sensor noise, in vibration isolation of the engine is investigated. Two robust control algorithms, namely H2 and H∞ schemes are employed to provide control input using feedback from accelerations of the engine body in the position of the mounts. Moreover, unstructured uncertainties due to the unmodeled dynamic of the plant, actuator and sensors are considered. Simulation results show that the active mount is more effective than the rubber mount in vibration suppression of the engine.


1996 ◽  
Vol 10 (23n24) ◽  
pp. 2857-2865 ◽  
Author(s):  
J.D. Carlson ◽  
D.M. Catanzarite ◽  
K.A. St. Clair

Controllable magnetorheological (MR) fluid devices have reached the stage where they are in commercial production. Such devices are finding application in a variety of real world situations ranging from active vibration control to aerobic exercise equipment. Examples of several, commercial MR fluid devices are described and the comparative ability of MR and ER fluids to meet the needs of practical devices is discussed.


Sign in / Sign up

Export Citation Format

Share Document